Region-based fusion of infrared and visible images using Bidimensional Empirical Mode Decomposition

W. Liang, Zhifang Liu
{"title":"Region-based fusion of infrared and visible images using Bidimensional Empirical Mode Decomposition","authors":"W. Liang, Zhifang Liu","doi":"10.1109/ICEIT.2010.5608352","DOIUrl":null,"url":null,"abstract":"Region-based image fusion schemes have been studied a lot, but they are all based on some common decomposition, such as pyramid, wavelet and contourlet transform. In this paper, we present a novel region-based image fusion scheme using BEMD (Bidimensional Empirical Mode Decomposition) for infrared and visible images. BEMD is a new 2D signal analysis method extended from EMD and it decomposes the signal into a series of IMFs (Intrinsic Mode Functions) from finest to coarsest. Region segmentation is of vital importance in the fusion process. Real images are always intensity inhomogeneous, e.g. infrared and visible images, so we use an LBF (Local Binary Fitting) model which aims at segmenting intensity inhomogeneous images to extract our regions. Experiments show that the proposed fusion scheme works effectively compared with traditional fusion schemes.","PeriodicalId":346498,"journal":{"name":"2010 International Conference on Educational and Information Technology","volume":"626 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Educational and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIT.2010.5608352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Region-based image fusion schemes have been studied a lot, but they are all based on some common decomposition, such as pyramid, wavelet and contourlet transform. In this paper, we present a novel region-based image fusion scheme using BEMD (Bidimensional Empirical Mode Decomposition) for infrared and visible images. BEMD is a new 2D signal analysis method extended from EMD and it decomposes the signal into a series of IMFs (Intrinsic Mode Functions) from finest to coarsest. Region segmentation is of vital importance in the fusion process. Real images are always intensity inhomogeneous, e.g. infrared and visible images, so we use an LBF (Local Binary Fitting) model which aims at segmenting intensity inhomogeneous images to extract our regions. Experiments show that the proposed fusion scheme works effectively compared with traditional fusion schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二维经验模态分解的红外与可见光图像区域融合
基于区域的图像融合方案已经研究了很多,但它们都是基于一些常见的分解,如金字塔变换、小波变换和轮廓波变换。本文提出了一种基于区域的红外和可见光图像融合方法。BEMD是在EMD基础上扩展而来的一种新的二维信号分析方法,它将信号从最优到最粗分解为一系列的内模函数(IMFs)。在融合过程中,区域分割是至关重要的。真实图像总是强度不均匀的,例如红外和可见光图像,因此我们使用LBF(局部二值拟合)模型来分割强度不均匀的图像来提取我们的区域。实验表明,与传统的融合方案相比,所提出的融合方案是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identity-based authenticated key exchange protocols Research on human resource allocation optimization based on genetic algorithm from the perspective of two-way choice model Notice of RetractionFinite element mode analysis for ATV motorcycle frame Function design for remote teaching system based on mobile learning Process quality assurance of core process in college teaching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1