Towards closing the data gap: A project-driven distributed energy resource dataset for the U.S. Grid

R. Haider, Yixing Xu, Weiwei Yang
{"title":"Towards closing the data gap: A project-driven distributed energy resource dataset for the U.S. Grid","authors":"R. Haider, Yixing Xu, Weiwei Yang","doi":"10.1145/3599733.3600250","DOIUrl":null,"url":null,"abstract":"Designing future energy systems with high penetrations of variable renewable energy and third-party owned devices requires information with high spatial and temporal granularity. Existing public datasets focus on specific resource classes (ex. bulk generators, residential solar, or electric vehicles), and cannot inform holistic planning or policy decisions. Further, with the high penetration of distributed energy resources (DERs) located in the distribution grid, datasets and models which focus only on the bulk system will no longer be sufficient. To meet this modelling need, this paper presents a project-driven dataset of DERs for the contiguous U.S., generated using only publicly available data. We integrate the resources into a high-resolution test system of the U.S. grid. Our integrated U.S. grid model and DER dataset enables planners, operators, and policy makers to pose questions and conduct data-driven analysis of rapid decarbonization pathways for the electricity system. We pose a set of research questions in our Research Project Database.","PeriodicalId":114998,"journal":{"name":"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3599733.3600250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Designing future energy systems with high penetrations of variable renewable energy and third-party owned devices requires information with high spatial and temporal granularity. Existing public datasets focus on specific resource classes (ex. bulk generators, residential solar, or electric vehicles), and cannot inform holistic planning or policy decisions. Further, with the high penetration of distributed energy resources (DERs) located in the distribution grid, datasets and models which focus only on the bulk system will no longer be sufficient. To meet this modelling need, this paper presents a project-driven dataset of DERs for the contiguous U.S., generated using only publicly available data. We integrate the resources into a high-resolution test system of the U.S. grid. Our integrated U.S. grid model and DER dataset enables planners, operators, and policy makers to pose questions and conduct data-driven analysis of rapid decarbonization pathways for the electricity system. We pose a set of research questions in our Research Project Database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向数据鸿沟:美国电网项目驱动的分布式能源数据集
设计具有可变可再生能源和第三方自有设备高渗透率的未来能源系统,需要具有高时空粒度的信息。现有的公共数据集侧重于特定的资源类别(如大型发电机、住宅太阳能或电动汽车),不能为整体规划或政策决策提供信息。此外,随着分布式能源(DERs)在配电网中的高度渗透,仅关注批量系统的数据集和模型将不再足够。为了满足这种建模需求,本文提出了一个项目驱动的美国邻近地区的DERs数据集,该数据集仅使用公开可用的数据生成。我们将这些资源整合到美国电网的高分辨率测试系统中。我们集成的美国电网模型和DER数据集使规划者、运营商和政策制定者能够提出问题,并对电力系统的快速脱碳路径进行数据驱动分析。我们在我们的研究项目数据库中提出了一系列研究问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of Forecast Characteristics on the Forecast Value for the Dispatchable Feeder Cost Optimization for the Edge-Cloud Continuum by Energy-Aware Workload Placement Investigating the Impact of Space Allocation Strategy on Energy-Comfort Trade-off in Office Buildings Towards closing the data gap: A project-driven distributed energy resource dataset for the U.S. Grid EXARL-PARS: Parallel Augmented Random Search Using Reinforcement Learning at Scale for Applications in Power Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1