A New Discrete Whale Optimization Algorithm with a Spiral 3-opt Local Search for Solving the Traveling Salesperson Problem

Elias Rotondo, S. Heber
{"title":"A New Discrete Whale Optimization Algorithm with a Spiral 3-opt Local Search for Solving the Traveling Salesperson Problem","authors":"Elias Rotondo, S. Heber","doi":"10.1145/3533050.3533056","DOIUrl":null,"url":null,"abstract":"The whale optimization algorithm is a metaheuristic inspired by the hunting strategy of humpback whales. This paper proposes a new discrete spiral whale optimization algorithm (DSWOA) to solve the traveling salesperson problem (TSP). Our approach uses sequential consecutive crossover and spiral 3-opt search, a modified version of the popular 3-opt local search. Spiral 3-opt search works like the original 3-opt heuristic but only uses part of the tour to generate 3-opt moves. We show that spiral 3-opt achieves results similar to the original 3-opt technique and significantly reduces runtime. We evaluate DSWOA's performance on 19 TSP instances against six benchmark algorithms. Our results suggest that DSWOA produces TSP solutions that are as good or better than our competitors. For five of the six benchmark algorithms, we demonstrated statistically significant improvements.","PeriodicalId":109214,"journal":{"name":"Proceedings of the 2022 6th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533050.3533056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The whale optimization algorithm is a metaheuristic inspired by the hunting strategy of humpback whales. This paper proposes a new discrete spiral whale optimization algorithm (DSWOA) to solve the traveling salesperson problem (TSP). Our approach uses sequential consecutive crossover and spiral 3-opt search, a modified version of the popular 3-opt local search. Spiral 3-opt search works like the original 3-opt heuristic but only uses part of the tour to generate 3-opt moves. We show that spiral 3-opt achieves results similar to the original 3-opt technique and significantly reduces runtime. We evaluate DSWOA's performance on 19 TSP instances against six benchmark algorithms. Our results suggest that DSWOA produces TSP solutions that are as good or better than our competitors. For five of the six benchmark algorithms, we demonstrated statistically significant improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的带有螺旋3-选择局部搜索的离散鲸鱼优化算法求解旅行销售人员问题
鲸鱼优化算法是受座头鲸捕食策略启发的元启发式算法。提出了一种新的离散螺旋鲸优化算法(DSWOA)来解决旅行销售人员问题(TSP)。我们的方法使用连续交叉和螺旋3-opt搜索,这是流行的3-opt本地搜索的改进版本。螺旋3-opt搜索的工作原理与最初的3-opt启发式算法类似,但只使用部分行程来生成3-opt移动。我们表明螺旋3-opt实现了与原始3-opt技术相似的结果,并显着减少了运行时间。我们根据六种基准算法评估了19个TSP实例上DSWOA的性能。我们的结果表明,DSWOA产生的TSP解决方案与我们的竞争对手一样好,甚至更好。对于六种基准算法中的五种,我们展示了统计学上显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Hybrid PSO and SQP Algorithm in Optimization of the Retardance of Citrate Coated Ferrofluids Coevolutionary Algorithm for Evolving Competitive Strategies in the Weapon Target Assignment Problem A New Discrete Whale Optimization Algorithm with a Spiral 3-opt Local Search for Solving the Traveling Salesperson Problem N-Gram-Based Machine Learning Approach for Bot or Human Detection from Text Messages Assessing the Quality of Car Racing Controllers in a Virtual Setting under Changed Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1