Bayesian Network Prediction of Mobile User Throughput in 5G Wireless Networks

Qing-min Meng, Xiaoqiang Fang, Wenjing Yue, Yang Meng, Jingcheng Wei
{"title":"Bayesian Network Prediction of Mobile User Throughput in 5G Wireless Networks","authors":"Qing-min Meng, Xiaoqiang Fang, Wenjing Yue, Yang Meng, Jingcheng Wei","doi":"10.1109/ICCCAS.2018.8768972","DOIUrl":null,"url":null,"abstract":"By combining artificial intelligence and machine learning, next-generation cellular systems will enable advanced data analysis techniques to achieve efficient service quality management and network automation. In this paper, the Bayesian Network (BN) is used for the reliability prediction of throughput. The forecast is to predict future test results through parameter estimation. In the studied Bayesian network learning stage, the load of the base station, user location and moving speed all affect the user’s received signal-to noise ratio (SNR) and signal interference plus noise ratio (SINR). The test result is the probability or number of times that throughput of a low-speed mobile user satisfies the threshold. Computer simulation results show that the model can well infer the user’s throughput under low speed movement conditions.","PeriodicalId":166878,"journal":{"name":"2018 10th International Conference on Communications, Circuits and Systems (ICCCAS)","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Communications, Circuits and Systems (ICCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCAS.2018.8768972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

By combining artificial intelligence and machine learning, next-generation cellular systems will enable advanced data analysis techniques to achieve efficient service quality management and network automation. In this paper, the Bayesian Network (BN) is used for the reliability prediction of throughput. The forecast is to predict future test results through parameter estimation. In the studied Bayesian network learning stage, the load of the base station, user location and moving speed all affect the user’s received signal-to noise ratio (SNR) and signal interference plus noise ratio (SINR). The test result is the probability or number of times that throughput of a low-speed mobile user satisfies the threshold. Computer simulation results show that the model can well infer the user’s throughput under low speed movement conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5G无线网络中移动用户吞吐量的贝叶斯网络预测
通过结合人工智能和机器学习,下一代蜂窝系统将实现先进的数据分析技术,以实现高效的服务质量管理和网络自动化。本文将贝叶斯网络(BN)用于吞吐量可靠性预测。预测是通过参数估计来预测未来的试验结果。在所研究的贝叶斯网络学习阶段,基站负载、用户位置和移动速度都会影响用户接收到的信噪比(SNR)和信噪比(SINR)。测试结果是低速移动用户吞吐量满足阈值的概率或次数。计算机仿真结果表明,该模型能较好地推断出用户在低速运动条件下的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of Gesture Recognition Device A New Method for Reducing PAPR in OFDM System Based on GreenOFDM Performance Analysis of Energy Harvesting Based Multi-source RA-coded Cooperative System A New Method of Machine Fault Detection Based on Machine Learning on Line Research on Lightning Performance of Back-flashover of UHV Direct Current Double-circuit Mixed-voltage Transmission Lines on the Same Tower
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1