Arabic Dialect Identification for Travel and Twitter Text

Pruthwik Mishra, Vandan Mujadia
{"title":"Arabic Dialect Identification for Travel and Twitter Text","authors":"Pruthwik Mishra, Vandan Mujadia","doi":"10.18653/v1/W19-4628","DOIUrl":null,"url":null,"abstract":"This paper presents the results of the experiments done as a part of MADAR Shared Task in WANLP 2019 on Arabic Fine-Grained Dialect Identification. Dialect Identification is one of the prominent tasks in the field of Natural language processing where the subsequent language modules can be improved based on it. We explored the use of different features like char, word n-gram, language model probabilities, etc on different classifiers. Results show that these features help to improve dialect classification accuracy. Results also show that traditional machine learning classifier tends to perform better when compared to neural network models on this task in a low resource setting.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents the results of the experiments done as a part of MADAR Shared Task in WANLP 2019 on Arabic Fine-Grained Dialect Identification. Dialect Identification is one of the prominent tasks in the field of Natural language processing where the subsequent language modules can be improved based on it. We explored the use of different features like char, word n-gram, language model probabilities, etc on different classifiers. Results show that these features help to improve dialect classification accuracy. Results also show that traditional machine learning classifier tends to perform better when compared to neural network models on this task in a low resource setting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旅游和推特文本的阿拉伯语方言识别
本文介绍了WANLP 2019中MADAR共享任务中关于阿拉伯语细粒度方言识别的实验结果。方言识别是自然语言处理领域的重要课题之一,可以在此基础上对后续语言模块进行改进。我们探索了在不同的分类器上使用不同的特征,如char、word n-gram、语言模型概率等。结果表明,这些特征有助于提高方言分类的准确率。结果还表明,在低资源环境下,与神经网络模型相比,传统的机器学习分类器往往表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Morphology-aware Word-Segmentation in Dialectal Arabic Adaptation of Neural Machine Translation Arabic Tweet-Act: Speech Act Recognition for Arabic Asynchronous Conversations En-Ar Bilingual Word Embeddings without Word Alignment: Factors Effects Simple But Not Naïve: Fine-Grained Arabic Dialect Identification Using Only N-Grams The SMarT Classifier for Arabic Fine-Grained Dialect Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1