Ignatius Luddy Indra Purnama, Alva Edy Tontowi, H. Herianto
{"title":"3D Image Reconstruction with Single-Slice CT using Improved Marching Cube Algorithm","authors":"Ignatius Luddy Indra Purnama, Alva Edy Tontowi, H. Herianto","doi":"10.1109/IBITeC46597.2019.9091687","DOIUrl":null,"url":null,"abstract":"Single-slice CT is still widely used in many hospitals because it prolongs the life cycle of the CT device components, especially that of x-ray. Using CT 3D image, it can be very helpful for a doctor in diagnosing medical information. In the development of 3D image reconstruction and computer technology, it is possible for the doctor to communicate with the patient through gadget media. This paper presents the determination of the threshold in single-slice Computerized Tomography (CT) for interactive 3D image reconstruction without user interface. The 3D image reconstruction method is the improved marching cube algorithm. The medical image object that consists of skull bone and sternum-pelvis in Digital Imaging and Communications in Medicine (DICOM) format is taken from single-slice CT. The resulting threshold for bone 3D image object is 200, except for the 3D image with quantity slice less than 10 can not be reconstructed. The difference in the surface volume and surface area between the 3D image reconstruction output from InVesalius software and project, for skull bone and sternum-pelvis is less than 0.5%. The justification of the visual shape match from three radiology doctors for skull bone and sternum-pelvis is approximately 99% match. Processing time to reconstruct the 3D image is around five minutes.","PeriodicalId":198107,"journal":{"name":"2019 International Biomedical Instrumentation and Technology Conference (IBITeC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Biomedical Instrumentation and Technology Conference (IBITeC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBITeC46597.2019.9091687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Single-slice CT is still widely used in many hospitals because it prolongs the life cycle of the CT device components, especially that of x-ray. Using CT 3D image, it can be very helpful for a doctor in diagnosing medical information. In the development of 3D image reconstruction and computer technology, it is possible for the doctor to communicate with the patient through gadget media. This paper presents the determination of the threshold in single-slice Computerized Tomography (CT) for interactive 3D image reconstruction without user interface. The 3D image reconstruction method is the improved marching cube algorithm. The medical image object that consists of skull bone and sternum-pelvis in Digital Imaging and Communications in Medicine (DICOM) format is taken from single-slice CT. The resulting threshold for bone 3D image object is 200, except for the 3D image with quantity slice less than 10 can not be reconstructed. The difference in the surface volume and surface area between the 3D image reconstruction output from InVesalius software and project, for skull bone and sternum-pelvis is less than 0.5%. The justification of the visual shape match from three radiology doctors for skull bone and sternum-pelvis is approximately 99% match. Processing time to reconstruct the 3D image is around five minutes.