Edgardo Palza, Jorge Sanchez, G. Mamani, P. Pacora, A. Abran, Jane Moon
{"title":"A Predictive Analytic Model for Maternal Morbidity","authors":"Edgardo Palza, Jorge Sanchez, G. Mamani, P. Pacora, A. Abran, Jane Moon","doi":"10.4018/978-1-4666-9432-3.CH005","DOIUrl":null,"url":null,"abstract":"This chapter presents a predictive analytic model for preventing neonatal morbidity through the analysis of patterns of risky behavior regarding morbidity in newborns. The chapter presents the design and implementation of a forecasting model of Neonatal morbidity. The model developed is based on artificial intelligence using Bayesian Networks, Influence Diagrams and principles of traditional statistics. The model research is based on a repository of 10,000 medical records at a hospital in Peru. The model aims to identify the factors that are causes of morbidity in newborns, is based on data mining techniques and developed using the CRISP-DM methodology.","PeriodicalId":149032,"journal":{"name":"Innovations in Global Maternal Health","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Global Maternal Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-4666-9432-3.CH005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This chapter presents a predictive analytic model for preventing neonatal morbidity through the analysis of patterns of risky behavior regarding morbidity in newborns. The chapter presents the design and implementation of a forecasting model of Neonatal morbidity. The model developed is based on artificial intelligence using Bayesian Networks, Influence Diagrams and principles of traditional statistics. The model research is based on a repository of 10,000 medical records at a hospital in Peru. The model aims to identify the factors that are causes of morbidity in newborns, is based on data mining techniques and developed using the CRISP-DM methodology.