Identification of Genes Associated with Alzheimer's Disease using Evolutionary Computation

Guangyao Chen, James Sargant, S. Houghten, T. K. Collins
{"title":"Identification of Genes Associated with Alzheimer's Disease using Evolutionary Computation","authors":"Guangyao Chen, James Sargant, S. Houghten, T. K. Collins","doi":"10.1109/CIBCB49929.2021.9562876","DOIUrl":null,"url":null,"abstract":"A multi-objective genetic algorithm is applied to the problem of identifying genes associated with Alzheimer's disease. The input to the genetic algorithm is a set of centrality measures obtained by merging various biological evidence types into a complex network, based on a set of 11 genes already known to be associated with this disease. In terms of leave-one-out validation, the strongest results are obtained using betweenness, with ranking showing that better results are sometimes obtained by including either stress or load with betweenness. The overall ranking of the genes across all runs is examined and suggests some genes worthy of further study with respect to their link to this disease. The methodology is also evaluated with respect to robustness by modifying the original network by a range of percentages, and applying the methodology to these variations. The results show that the methodology returns very similar results under these circumstances.","PeriodicalId":163387,"journal":{"name":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB49929.2021.9562876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A multi-objective genetic algorithm is applied to the problem of identifying genes associated with Alzheimer's disease. The input to the genetic algorithm is a set of centrality measures obtained by merging various biological evidence types into a complex network, based on a set of 11 genes already known to be associated with this disease. In terms of leave-one-out validation, the strongest results are obtained using betweenness, with ranking showing that better results are sometimes obtained by including either stress or load with betweenness. The overall ranking of the genes across all runs is examined and suggests some genes worthy of further study with respect to their link to this disease. The methodology is also evaluated with respect to robustness by modifying the original network by a range of percentages, and applying the methodology to these variations. The results show that the methodology returns very similar results under these circumstances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用进化计算鉴定与阿尔茨海默病相关的基因
将多目标遗传算法应用于阿尔茨海默病相关基因的识别问题。遗传算法的输入是一组中心性度量,通过将各种生物证据类型合并到一个复杂的网络中获得,该网络基于一组已知与该疾病相关的11个基因。就留一验证而言,使用中间性获得了最强的结果,排序显示,有时使用中间性包括应力或负载会获得更好的结果。研究人员检查了所有基因的总体排名,并提出了一些值得进一步研究的基因与这种疾病的联系。该方法还通过修改原始网络的百分比范围来评估鲁棒性,并将该方法应用于这些变化。结果表明,在这些情况下,该方法返回非常相似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ring Optimization of Epidemic Contact Networks A Comparison of Novel Representations for Evolving Epidemic Networks Multi-distance based spectral embedding fusion for clustering single-cell methylation data Predicting Influenza A Viral Host Using PSSM and Word Embeddings Identification of Genes Associated with Alzheimer's Disease using Evolutionary Computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1