Leveraging Synergies Between AI and Networking to Build Next Generation Edge Networks

Sen Lin, Ming Shi, A. Arora, Raef Bassily, E. Bertino, C. Caramanis, K. Chowdhury, E. Ekici, A. Eryilmaz, Stratis Ioannidis, Nan Jiang, Gauri Joshi, J. Kurose, Yitao Liang, Zhiqiang Lin, Jia Liu, M. Liu, T. Melodia, Aryan Mokhtari, Rob Nowak, Sewoong Oh, S. Parthasarathy, Chunyi Peng, H. Seferoglu, N. Shroff, S. Shakkottai, K. Srinivasan, Ameet Talwalkar, A. Yener, Lei Ying
{"title":"Leveraging Synergies Between AI and Networking to Build Next Generation Edge Networks","authors":"Sen Lin, Ming Shi, A. Arora, Raef Bassily, E. Bertino, C. Caramanis, K. Chowdhury, E. Ekici, A. Eryilmaz, Stratis Ioannidis, Nan Jiang, Gauri Joshi, J. Kurose, Yitao Liang, Zhiqiang Lin, Jia Liu, M. Liu, T. Melodia, Aryan Mokhtari, Rob Nowak, Sewoong Oh, S. Parthasarathy, Chunyi Peng, H. Seferoglu, N. Shroff, S. Shakkottai, K. Srinivasan, Ameet Talwalkar, A. Yener, Lei Ying","doi":"10.1109/CIC56439.2022.00013","DOIUrl":null,"url":null,"abstract":"Networking and Artificial Intelligence (AI) are two of the most transformative information technologies over the last few decades. Building upon the synergies of these two powerful technologies, we envision designing next generation of edge networks to be highly efficient, reliable, robust and secure. To this end, in this paper, we delve into interesting and fundamental research challenges and opportunities that span two major broad and symbiotic areas: AI for Networks and Networks for AI. The former deals with the development of new AI tools and techniques that can enable the next generation AI-assisted networks; while the latter focuses on developing networking techniques and tools that will facilitate the vision of distributed intelligence, resulting in a virtuous research cycle where advances in one will help accelerate advances in the other. A wide range of applications will be further discussed to illustrate the importance of the foundational advances developed in these two areas.","PeriodicalId":170721,"journal":{"name":"2022 IEEE 8th International Conference on Collaboration and Internet Computing (CIC)","volume":"153 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Collaboration and Internet Computing (CIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC56439.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Networking and Artificial Intelligence (AI) are two of the most transformative information technologies over the last few decades. Building upon the synergies of these two powerful technologies, we envision designing next generation of edge networks to be highly efficient, reliable, robust and secure. To this end, in this paper, we delve into interesting and fundamental research challenges and opportunities that span two major broad and symbiotic areas: AI for Networks and Networks for AI. The former deals with the development of new AI tools and techniques that can enable the next generation AI-assisted networks; while the latter focuses on developing networking techniques and tools that will facilitate the vision of distributed intelligence, resulting in a virtuous research cycle where advances in one will help accelerate advances in the other. A wide range of applications will be further discussed to illustrate the importance of the foundational advances developed in these two areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工智能和网络之间的协同作用,构建下一代边缘网络
网络和人工智能(AI)是过去几十年来最具变革性的两种信息技术。基于这两种强大技术的协同作用,我们设想设计出高效、可靠、健壮和安全的下一代边缘网络。为此,在本文中,我们深入研究了跨越两个主要广泛和共生领域的有趣和基础研究挑战和机遇:面向网络的人工智能和面向人工智能的网络。前者涉及能够实现下一代人工智能辅助网络的新人工智能工具和技术的开发;而后者则专注于开发网络技术和工具,以促进分布式智能的愿景,从而形成一个良性的研究循环,其中一个领域的进步将有助于加速另一个领域的进步。广泛的应用将进一步讨论,以说明在这两个领域发展的基础进展的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantic Communications: A Paradigm Whose Time Has Come Exploring Generalizability of Fine-Tuned Models for Fake News Detection Human-Machine Collaboration for Smart Decision Making: Current Trends and Future Opportunities Next Generation Federated Learning for Edge Devices: An Overview Leveraging Synergies Between AI and Networking to Build Next Generation Edge Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1