Annealing by Increasing Resampling in the Unified View of Simulated Annealing

Yasunobu Imamura, N. Higuchi, T. Shinohara, K. Hirata, T. Kuboyama
{"title":"Annealing by Increasing Resampling in the Unified View of Simulated Annealing","authors":"Yasunobu Imamura, N. Higuchi, T. Shinohara, K. Hirata, T. Kuboyama","doi":"10.5220/0007380701730180","DOIUrl":null,"url":null,"abstract":"Annealing by Increasing Resampling (AIR) is a stochastic hill-climbing optimization by resampling with increasing size for evaluating an objective function. In this paper, we introduce a unified view of the conventional Simulated Annealing (SA) and AIR. In this view, we generalize both SA and AIR to a stochastic hill-climbing for objective functions with stochastic fluctuations, i.e., logit and probit, respectively. Since the logit function is approximated by the probit function, we show that AIR is regarded as an approximation of SA. The experimental results on sparse pivot selection and annealing-based clustering also support that AIR is an approximation of SA. Moreover, when an objective function requires a large number of samples, AIR is much faster than SA without sacrificing the quality of the results.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007380701730180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Annealing by Increasing Resampling (AIR) is a stochastic hill-climbing optimization by resampling with increasing size for evaluating an objective function. In this paper, we introduce a unified view of the conventional Simulated Annealing (SA) and AIR. In this view, we generalize both SA and AIR to a stochastic hill-climbing for objective functions with stochastic fluctuations, i.e., logit and probit, respectively. Since the logit function is approximated by the probit function, we show that AIR is regarded as an approximation of SA. The experimental results on sparse pivot selection and annealing-based clustering also support that AIR is an approximation of SA. Moreover, when an objective function requires a large number of samples, AIR is much faster than SA without sacrificing the quality of the results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟退火统一观点下增加重采样退火
增加重采样退火(AIR)是一种随机爬坡优化方法,通过增加重采样的大小来评估目标函数。本文介绍了传统模拟退火(SA)和模拟退火(AIR)的统一观点。在这种观点下,我们将SA和AIR分别推广为具有随机波动的目标函数的随机爬坡,即logit和probit。由于logit函数由probit函数近似,我们证明AIR被视为SA的近似。稀疏枢轴选择和退火聚类的实验结果也支持AIR是SA的近似。此外,当目标函数需要大量样本时,AIR在不牺牲结果质量的情况下比SA快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm On Spectrogram Analysis in a Multiple Classifier Fusion Framework for Power Grid Classification Using Electric Network Frequency Semantic Properties of cosine based bias scores for word embeddings Double Trouble? Impact and Detection of Duplicates in Face Image Datasets Detecting Brain Tumors through Multimodal Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1