Image Based Visual Servoing Using Takagi-Sugeno Fuzzy Neural Network Controller

Miao Hao, Zeng-qi Sun, Masakazu Fujii
{"title":"Image Based Visual Servoing Using Takagi-Sugeno Fuzzy Neural Network Controller","authors":"Miao Hao, Zeng-qi Sun, Masakazu Fujii","doi":"10.1109/ISIC.2007.4450860","DOIUrl":null,"url":null,"abstract":"In this paper, a Takagi-Sugeno fuzzy neural network controller (TS-FNNC) based image based visual servoing (IBVS) method is proposed. Firstly, the eigenspace based image compression method is explored which is chosen as the global feature transformation method. After that, the inner structure, performance and training method of T-S neural network controller are discussed respectively. Besides, the whole architecture of the TS-FNNC is investigated. No artificial mark is needed in the visual servoing process. No priori knowledge of the robot kinetics and dynamics or camera calibration is needed. The method is implemented and validated on a Motoman UP6 based eye-in-hand platform and the experimental results are also reported in the end.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, a Takagi-Sugeno fuzzy neural network controller (TS-FNNC) based image based visual servoing (IBVS) method is proposed. Firstly, the eigenspace based image compression method is explored which is chosen as the global feature transformation method. After that, the inner structure, performance and training method of T-S neural network controller are discussed respectively. Besides, the whole architecture of the TS-FNNC is investigated. No artificial mark is needed in the visual servoing process. No priori knowledge of the robot kinetics and dynamics or camera calibration is needed. The method is implemented and validated on a Motoman UP6 based eye-in-hand platform and the experimental results are also reported in the end.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Takagi-Sugeno模糊神经网络控制器的图像视觉伺服
提出了一种基于Takagi-Sugeno模糊神经网络控制器(TS-FNNC)的图像视觉伺服(IBVS)方法。首先,研究了基于特征空间的图像压缩方法,选择了基于特征空间的图像压缩方法作为全局特征变换方法。然后,分别讨论了T-S神经网络控制器的内部结构、性能和训练方法。此外,对TS-FNNC的整体结构进行了研究。在视觉伺服过程中不需要人工标记。不需要先验的机器人动力学和动力学知识或摄像机校准。最后在基于Motoman UP6的手眼平台上对该方法进行了实现和验证,并给出了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-Degree-of-Freedom Control of a Self-Sensing Micro-Actuator for HDD A Dual Mode Reference Governor for Discrete Time Systems with State and Control Constraints A Potential Field Approach for Controlling a Mobile Robot to Track a Moving Target Algorithm for variational inequality problems based on a gradient dynamical system designed using a control Liapunov function Optimal Tuning of PID Parameters Using Iterative Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1