Confidential Execution of Deep Learning Inference at the Untrusted Edge with ARM TrustZone

Md Shihabul Islam, Mahmoud Zamani, C. Kim, L. Khan, Kevin W. Hamlen
{"title":"Confidential Execution of Deep Learning Inference at the Untrusted Edge with ARM TrustZone","authors":"Md Shihabul Islam, Mahmoud Zamani, C. Kim, L. Khan, Kevin W. Hamlen","doi":"10.1145/3577923.3583648","DOIUrl":null,"url":null,"abstract":"This paper proposes a new confidential deep learning (DL) inference system with ARM TrustZone to provide confidentiality and integrity of DL models and data in an untrusted edge device with limited memory. Although ARM TrustZone supplies a strong, hardware-supported trusted execution environment for protecting sensitive code and data in an edge device against adversaries, resource limitations in typical edge devices have raised significant challenges for protecting on-device DL requiring large memory consumption without sacrificing the security and accuracy of the model. The proposed solution addresses this challenge without modifying the protected DL model, thereby preserving the original prediction accuracy. Comprehensive experiments using different DL architectures and datasets demonstrate that inference services for large and complex DL models can be deployed in edge devices with TrustZone with limited trusted memory, ensuring data confidentiality and preserving the original model's prediction exactness.","PeriodicalId":387479,"journal":{"name":"Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577923.3583648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a new confidential deep learning (DL) inference system with ARM TrustZone to provide confidentiality and integrity of DL models and data in an untrusted edge device with limited memory. Although ARM TrustZone supplies a strong, hardware-supported trusted execution environment for protecting sensitive code and data in an edge device against adversaries, resource limitations in typical edge devices have raised significant challenges for protecting on-device DL requiring large memory consumption without sacrificing the security and accuracy of the model. The proposed solution addresses this challenge without modifying the protected DL model, thereby preserving the original prediction accuracy. Comprehensive experiments using different DL architectures and datasets demonstrate that inference services for large and complex DL models can be deployed in edge devices with TrustZone with limited trusted memory, ensuring data confidentiality and preserving the original model's prediction exactness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ARM TrustZone的非信任边缘深度学习推理保密执行
本文提出了一种新的基于ARM TrustZone的机密深度学习推理系统,以在内存有限的不可信边缘设备中提供深度学习模型和数据的机密性和完整性。尽管ARM TrustZone提供了一个强大的、硬件支持的可信执行环境,用于保护边缘设备中的敏感代码和数据免受攻击,但典型边缘设备中的资源限制为保护需要大量内存消耗的设备上DL提出了重大挑战,同时又不牺牲模型的安全性和准确性。提出的解决方案在不修改受保护的深度学习模型的情况下解决了这一挑战,从而保持了原始的预测精度。使用不同深度学习架构和数据集的综合实验表明,大型复杂深度学习模型的推理服务可以部署在具有有限可信内存的TrustZone的边缘设备中,确保数据机密性并保持原始模型的预测准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackling Credential Abuse Together Comparative Privacy Analysis of Mobile Browsers Confidential Execution of Deep Learning Inference at the Untrusted Edge with ARM TrustZone Local Methods for Privacy Protection and Impact on Fairness Role Models: Role-based Debloating for Web Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1