Practical solutions to the problem of diagonal dominance in kernel document clustering

Derek Greene, P. Cunningham
{"title":"Practical solutions to the problem of diagonal dominance in kernel document clustering","authors":"Derek Greene, P. Cunningham","doi":"10.1145/1143844.1143892","DOIUrl":null,"url":null,"abstract":"In supervised kernel methods, it has been observed that the performance of the SVM classifier is poor in cases where the diagonal entries of the Gram matrix are large relative to the off-diagonal entries. This problem, referred to as diagonal dominance, often occurs when certain kernel functions are applied to sparse high-dimensional data, such as text corpora. In this paper we investigate the implications of diagonal dominance for unsupervised kernel methods, specifically in the task of document clustering. We propose a selection of strategies for addressing this issue, and evaluate their effectiveness in producing more accurate and stable clusterings.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"484","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 484

Abstract

In supervised kernel methods, it has been observed that the performance of the SVM classifier is poor in cases where the diagonal entries of the Gram matrix are large relative to the off-diagonal entries. This problem, referred to as diagonal dominance, often occurs when certain kernel functions are applied to sparse high-dimensional data, such as text corpora. In this paper we investigate the implications of diagonal dominance for unsupervised kernel methods, specifically in the task of document clustering. We propose a selection of strategies for addressing this issue, and evaluate their effectiveness in producing more accurate and stable clusterings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核心文档聚类中对角优势问题的实用解决方案
在监督核方法中,已经观察到,当Gram矩阵的对角线条目相对于非对角线条目较大时,支持向量机分类器的性能较差。当某些核函数应用于稀疏的高维数据(如文本语料库)时,通常会出现这种被称为对角优势的问题。在本文中,我们研究了对角优势对无监督核方法的影响,特别是在文档聚类任务中。我们提出了一系列解决这一问题的策略,并评估了它们在产生更准确和稳定的聚类方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1