Automating computational placement in IoT environments: doctoral symposium

Peter Michalák, S. Heaps, M. Trenell, P. Watson
{"title":"Automating computational placement in IoT environments: doctoral symposium","authors":"Peter Michalák, S. Heaps, M. Trenell, P. Watson","doi":"10.1145/2933267.2933435","DOIUrl":null,"url":null,"abstract":"The growth in the number of Internet of Things (IoT) devices and applications, and an increase in the capabilities of sensors creates an opportunity to optimise IoT applications by partitioning the computation across all components in the processing chain: sensors, field gateways and clouds. This can be done to optimise a range of factors including performance, energy and cost. This paper presents an overview of an optimiser designed to achieve this. It takes as input a high-level, declarative description of the computation, along with a set of non-functional requirements. From this it aims to generate the best deployment plan. The main use case, described in the paper is the use of wearable sensors for the real-time monitoring of the activity and glucose levels of type II diabetes patients. This paper describes the architecture of the optimiser, gives an example of an energy-based cost model, and shows how the approach applies to the diabetes use case.","PeriodicalId":277061,"journal":{"name":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933267.2933435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The growth in the number of Internet of Things (IoT) devices and applications, and an increase in the capabilities of sensors creates an opportunity to optimise IoT applications by partitioning the computation across all components in the processing chain: sensors, field gateways and clouds. This can be done to optimise a range of factors including performance, energy and cost. This paper presents an overview of an optimiser designed to achieve this. It takes as input a high-level, declarative description of the computation, along with a set of non-functional requirements. From this it aims to generate the best deployment plan. The main use case, described in the paper is the use of wearable sensors for the real-time monitoring of the activity and glucose levels of type II diabetes patients. This paper describes the architecture of the optimiser, gives an example of an energy-based cost model, and shows how the approach applies to the diabetes use case.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网环境中的自动化计算放置:博士研讨会
物联网(IoT)设备和应用数量的增长,以及传感器功能的增加,为优化物联网应用创造了机会,方法是将计算划分到处理链中的所有组件:传感器、现场网关和云。这可以优化一系列因素,包括性能、能源和成本。本文概述了一个优化器的设计,以实现这一目标。它将计算的高级声明性描述以及一组非功能需求作为输入。由此,它旨在生成最佳部署计划。论文中描述的主要用例是使用可穿戴传感器实时监测II型糖尿病患者的活动和血糖水平。本文描述了优化器的架构,给出了一个基于能量的成本模型的示例,并展示了该方法如何应用于糖尿病用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy efficient, context-aware cache coding for mobile information-centric networks High performance top-k processing of non-linear windows over data streams Distributed k-core decomposition and maintenance in large dynamic graphs Experience of event stream processing for top-k queries and dynamic graphs Automating computational placement in IoT environments: doctoral symposium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1