The comparison of the proposed recommended system with actual data

L. Kovavisaruch, T. Sanpechuda
{"title":"The comparison of the proposed recommended system with actual data","authors":"L. Kovavisaruch, T. Sanpechuda","doi":"10.1109/iSAI-NLP54397.2021.9678151","DOIUrl":null,"url":null,"abstract":"Recommendation systems for the museum have been active in the past decade. It used to be a difficult task to make the personalized recommended list for museum-goer. However, with the current technology, research can provide the list for visitors via technology such as mobile applications. We have proposed a recommendation system based on social filtering and statistical methods in the previous paper. This paper applies the F1-score to evaluate our recommendation methods on the actual visitor loggers from Chao sampradaya national museum. We compare the social filtering method with the statistical method and benchmark with the random recommendation. In comparison, the statistical method gives the same result as social filtering when the time is limited. The longer time the visitor spends in the museum, the better result from the social filtering. However, in terms of calculation complexity, the statistical method outperforms social filtering.","PeriodicalId":339826,"journal":{"name":"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP54397.2021.9678151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recommendation systems for the museum have been active in the past decade. It used to be a difficult task to make the personalized recommended list for museum-goer. However, with the current technology, research can provide the list for visitors via technology such as mobile applications. We have proposed a recommendation system based on social filtering and statistical methods in the previous paper. This paper applies the F1-score to evaluate our recommendation methods on the actual visitor loggers from Chao sampradaya national museum. We compare the social filtering method with the statistical method and benchmark with the random recommendation. In comparison, the statistical method gives the same result as social filtering when the time is limited. The longer time the visitor spends in the museum, the better result from the social filtering. However, in terms of calculation complexity, the statistical method outperforms social filtering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提出的推荐系统与实际数据的比较
博物馆的推荐系统在过去十年一直很活跃。过去,为参观博物馆的人制作个性化的推荐名单是一项艰巨的任务。然而,以目前的技术,研究可以通过诸如移动应用程序等技术为访问者提供列表。我们在之前的文章中提出了一种基于社会过滤和统计方法的推荐系统。本文运用f1分值对我们的推荐方法对Chao sampradaya国立博物馆的实际游客记录者进行了评价。将社会过滤方法与统计方法进行比较,将基准测试方法与随机推荐方法进行比较。相比之下,在时间有限的情况下,统计方法得到的结果与社会过滤相同。参观者在博物馆停留的时间越长,社会过滤效果越好。然而,在计算复杂度方面,统计方法优于社会过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Replay Attack Detection in Automatic Speaker Verification Based on ResNeWt18 with Linear Frequency Cepstral Coefficients Image Processing for Classification of Rice Varieties with Deep Convolutional Neural Networks KaleCare: Smart Farm for Kale with Pests Detection System using Machine Learning The comparison of the proposed recommended system with actual data sylbreak4all: Regular Expressions for Syllable Breaking of Nine Major Ethnic Languages of Myanmar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1