Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams

SCG '90 Pub Date : 1990-05-01 DOI:10.1145/98524.98575
Hiromi Aonuma, H. Imai, K. Imai, T. Tokuyama
{"title":"Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams","authors":"Hiromi Aonuma, H. Imai, K. Imai, T. Tokuyama","doi":"10.1145/98524.98575","DOIUrl":null,"url":null,"abstract":"This paper considers the maximin placement of a convex polygon <italic>P</italic> inside a polygon <italic>Q</italic>, and introduce several new static and dynamic Voronoi diagrams to solve the problem. It is shown that <italic>P</italic> can be placed inside <italic>Q</italic>, using translation and rotation, so that the minimum Euclidean distance between any point on <italic>P</italic> and any point on <italic>Q</italic> is maximized in <italic>&Ogr;</italic>(<italic>m</italic><supscrpt>4</supscrpt><italic>n λ</italic><subscrpt>16</subscrpt>(<italic>mn</italic>) log <italic>mn</italic>) time, where <italic>m</italic> and <italic>n</italic> are the numbers of edges of <italic>P</italic> and <italic>Q</italic>, respectively, and <italic>λ</italic><subscrpt>16</subscrpt>(<italic>N</italic>) is the maximum length of Davenport-Schinzel sequences on <italic>N</italic> alphabets of order 16. If only translation is allowed, the problem can be solved in <italic>&Ogr;</italic>(<italic>mn</italic> log <italic>mn</italic>) time. The problem of placing multiple translates of <italic>P</italic> inside <italic>Q</italic> in a maximum manner is also considered, and in connection with this problem the dynamic Voronoi diagram of <italic>&kgr;</italic> rigidly moving sets of <italic>n</italic> points is investigated. The combinatorial complexity of this canonical dynamic diagram for <italic>&kgr;n</italic> points is shown to be <italic>&Ogr;</italic>(<italic>n</italic><supscrpt>2</supscrpt>) and <italic>&Ogr;</italic>(<italic>n</italic><supscrpt>3</supscrpt><italic>&kgr;</italic><supscrpt>4</supscrpt> log<supscrpt>*</supscrpt> <italic>&kgr;</italic>) for <italic>&kgr;</italic> = 2, 3 and <italic>&kgr;</italic> ≥ 4, respectively. Several related problems are also treated in a unified way.","PeriodicalId":113850,"journal":{"name":"SCG '90","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCG '90","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/98524.98575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

This paper considers the maximin placement of a convex polygon P inside a polygon Q, and introduce several new static and dynamic Voronoi diagrams to solve the problem. It is shown that P can be placed inside Q, using translation and rotation, so that the minimum Euclidean distance between any point on P and any point on Q is maximized in &Ogr;(m4n λ16(mn) log mn) time, where m and n are the numbers of edges of P and Q, respectively, and λ16(N) is the maximum length of Davenport-Schinzel sequences on N alphabets of order 16. If only translation is allowed, the problem can be solved in &Ogr;(mn log mn) time. The problem of placing multiple translates of P inside Q in a maximum manner is also considered, and in connection with this problem the dynamic Voronoi diagram of &kgr; rigidly moving sets of n points is investigated. The combinatorial complexity of this canonical dynamic diagram for &kgr;n points is shown to be &Ogr;(n2) and &Ogr;(n3&kgr;4 log* &kgr;) for &kgr; = 2, 3 and &kgr; ≥ 4, respectively. Several related problems are also treated in a unified way.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多边形和相关动态Voronoi图中凸对象的最大位置
本文考虑了凸多边形P在多边形Q内的最大位置,并引入了几种新的静态和动态Voronoi图来解决这一问题。证明了P可以通过平移和旋转放置在Q内,使得P上任意点与Q上任意点之间的最小欧氏距离在&Ogr;(m4n λ16(mn) log mn)时间内达到最大值,其中m和n分别为P和Q的边数,λ16(n)为n个16阶字母上的Davenport-Schinzel序列的最大长度。如果只允许平移,则可以在&Ogr;(mn log mn)时间内解决问题。本文还考虑了以最大方式将P的多个平移放置在Q内的问题,并与此问题联系起来,给出了&kgr;研究了n个点的刚性移动集。对于&kgr;n个点,正则动态图的组合复杂度为&Ogr;(n2)和&Ogr;(n3&kgr;4 log* &kgr;)= 2,3 and &kgr;分别≥4。几个相关问题也统一处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear programming and convex hulls made easy Computing the minimum Hausdorff distance for point sets under translation On solving geometric optimization problems using shortest paths Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams An O(n2log n) time algorithm for the MinMax angle triangulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1