{"title":"Fault Detection by Signal Reconstruction in Nuclear Power Plants","authors":"Ibrahim Ahmed, E. Zio, G. Heo","doi":"10.5772/intechopen.101276","DOIUrl":null,"url":null,"abstract":"In this work, the recently developed auto associative bilateral kernel regression (AABKR) method for on-line condition monitoring of systems, structures, and components (SSCs) during transient process operation of a nuclear power plant (NPP) is improved. The advancement enhances the capability of reconstructing abnormal signals to the values expected in normal conditions during both transient and steady-state process operations. The modification introduced to the method is based on the adoption of two new approaches using dynamic time warping (DTW) for the identification of the time position index (the position of the nearest vector within the historical data vectors to the current on-line query measurement) used by the weighted-distance algorithm that captures temporal dependences in the data. Applications are provided to a steady-state numerical process and a case study concerning sensor signals collected from a reactor coolant system (RCS) during start-up operation of a NPP. The results demonstrate the effectiveness of the proposed method for fault detection during steady-state and transient operations.","PeriodicalId":196927,"journal":{"name":"Nuclear Reactors [Working Title]","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Reactors [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.101276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the recently developed auto associative bilateral kernel regression (AABKR) method for on-line condition monitoring of systems, structures, and components (SSCs) during transient process operation of a nuclear power plant (NPP) is improved. The advancement enhances the capability of reconstructing abnormal signals to the values expected in normal conditions during both transient and steady-state process operations. The modification introduced to the method is based on the adoption of two new approaches using dynamic time warping (DTW) for the identification of the time position index (the position of the nearest vector within the historical data vectors to the current on-line query measurement) used by the weighted-distance algorithm that captures temporal dependences in the data. Applications are provided to a steady-state numerical process and a case study concerning sensor signals collected from a reactor coolant system (RCS) during start-up operation of a NPP. The results demonstrate the effectiveness of the proposed method for fault detection during steady-state and transient operations.