Impact of Air Pollution on Solar Radiation in Megacity Jakarta

Inna Syafarina, A. Latifah, I. Wahyuni, Rido Dwi Ismanto, Ariani Indrawati, M. Rosyidi, W. Iriana, S. D. A. Kusumaningtyas, A. Imami, E. Yulihastin
{"title":"Impact of Air Pollution on Solar Radiation in Megacity Jakarta","authors":"Inna Syafarina, A. Latifah, I. Wahyuni, Rido Dwi Ismanto, Ariani Indrawati, M. Rosyidi, W. Iriana, S. D. A. Kusumaningtyas, A. Imami, E. Yulihastin","doi":"10.1145/3575882.3575913","DOIUrl":null,"url":null,"abstract":"Air pollution can intrude on the process of solar radiation reaching the earth’s surface, disrupting the earth’s heat balance. Global warming is one of its consequences. This study aims to analyze the impact of air pollution on solar radiation using Random Forest (RF) and Support Vector Regression (SVR) models. We use six pollutant types to predict the diffuse solar radiation, i.e., PM2.5, PM10, NO2, SO2, CO, and O3. Besides, near-surface temperature and sunshine duration are also expected to influence solar radiation or vice versa. The models are applied in two locations in Jakarta, Kemayoran and Jagakarsa, from January-August 2019. Based on the model performance, RF outperformed compared to the SVR model. RF model found that all variables, pollutants, temperature, and sunshine duration, impact the solar radiation in both locations. While the SVR model showed that the solar radiation in Kemayoran is affected by all variables, excluding O3. Meanwhile, PM2.5, PM10, NO2, temperature, and sunshine duration affect the solar radiation in Jagakarsa. Overall, PM2.5 is one of the top three most influential pollutants.","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Air pollution can intrude on the process of solar radiation reaching the earth’s surface, disrupting the earth’s heat balance. Global warming is one of its consequences. This study aims to analyze the impact of air pollution on solar radiation using Random Forest (RF) and Support Vector Regression (SVR) models. We use six pollutant types to predict the diffuse solar radiation, i.e., PM2.5, PM10, NO2, SO2, CO, and O3. Besides, near-surface temperature and sunshine duration are also expected to influence solar radiation or vice versa. The models are applied in two locations in Jakarta, Kemayoran and Jagakarsa, from January-August 2019. Based on the model performance, RF outperformed compared to the SVR model. RF model found that all variables, pollutants, temperature, and sunshine duration, impact the solar radiation in both locations. While the SVR model showed that the solar radiation in Kemayoran is affected by all variables, excluding O3. Meanwhile, PM2.5, PM10, NO2, temperature, and sunshine duration affect the solar radiation in Jagakarsa. Overall, PM2.5 is one of the top three most influential pollutants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雅加达特大城市空气污染对太阳辐射的影响
空气污染会干扰太阳辐射到达地球表面的过程,破坏地球的热平衡。全球变暖是其后果之一。本文采用随机森林(Random Forest, RF)和支持向量回归(Support Vector Regression, SVR)模型分析大气污染对太阳辐射的影响。我们使用PM2.5、PM10、NO2、SO2、CO和O3 6种污染物类型来预测太阳漫射辐射。此外,预计近地表温度和日照时数也会影响太阳辐射,反之亦然。这些模型将于2019年1月至8月在雅加达的两个地点——凯马约兰和贾卡卡尔萨进行应用。从模型性能来看,RF优于SVR模型。RF模型发现,污染物、温度和日照时间等所有变量都会影响两个地点的太阳辐射。而SVR模型显示,Kemayoran地区的太阳辐射受除O3外的所有变量的影响。同时,PM2.5、PM10、NO2、温度和日照时数对Jagakarsa的太阳辐射也有影响。总体而言,PM2.5是最具影响力的三大污染物之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the climate factors affecting forest fire in Sumatra using Random Forest and Artificial Neural Network Parallel Programming in Finite Difference Method to Solve Turing's Model of Spot Pattern Identification of Hoya Plant using Convolutional Neural Network (CNN) and Transfer Learning Android-based Forest Fire Danger Rating Information System for Early Prevention of Forest / Land fires Leak Detection using Non-Intrusive Ultrasonic Water Flowmeter Sensor in Water Distribution Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1