Spatio-Temporal Evolution of Cellular Automata based Single Nephron Rigid Tubular Model

Siva Manohar Reddy Kesu, Hariharan Ramasangu
{"title":"Spatio-Temporal Evolution of Cellular Automata based Single Nephron Rigid Tubular Model","authors":"Siva Manohar Reddy Kesu, Hariharan Ramasangu","doi":"10.1145/3486713.3486744","DOIUrl":null,"url":null,"abstract":"Partial differential equations play an important role in mathematical modeling of nephrons. The finite difference solution methods exhibit regular, period doubling and irregular oscillations. In this paper, a single nephron model with transport mechanism and autoregulatory mechanism has been developed using cellular automata framework for a rigid tubule. Cellular automata framework captures the emergent behavior of the system. The importance of cellular automata approach of studying a dynamical system emanates from its ability to capture new behavior not easily shown by numerical analysis. The governing equations of a single nephron model are converted to cellular automata local rules using ultradiscretization. The emergent properties from the local cellular automata rules have been compared with the reported experimental findings. It has been shown that cellular automata framework with ultradiscretization is a promising approach to model macrolevel behaviors of physiological systems.","PeriodicalId":268366,"journal":{"name":"The 12th International Conference on Computational Systems-Biology and Bioinformatics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th International Conference on Computational Systems-Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486713.3486744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Partial differential equations play an important role in mathematical modeling of nephrons. The finite difference solution methods exhibit regular, period doubling and irregular oscillations. In this paper, a single nephron model with transport mechanism and autoregulatory mechanism has been developed using cellular automata framework for a rigid tubule. Cellular automata framework captures the emergent behavior of the system. The importance of cellular automata approach of studying a dynamical system emanates from its ability to capture new behavior not easily shown by numerical analysis. The governing equations of a single nephron model are converted to cellular automata local rules using ultradiscretization. The emergent properties from the local cellular automata rules have been compared with the reported experimental findings. It has been shown that cellular automata framework with ultradiscretization is a promising approach to model macrolevel behaviors of physiological systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于元胞自动机的单肾元刚性管模型的时空演化
偏微分方程在肾元的数学建模中起着重要的作用。有限差分解法表现出规则、周期加倍和不规则振荡。本文利用元胞自动机框架,建立了具有刚性小管转运机制和自调节机制的单肾元模型。元胞自动机框架捕捉系统的突发行为。元胞自动机方法研究动力系统的重要性在于它能够捕捉到数值分析不容易显示的新行为。采用超离散化方法将单肾元模型的控制方程转化为元胞自动机的局部规则。将局部元胞自动机规则的涌现特性与已有的实验结果进行了比较。研究表明,具有超离散化的元胞自动机框架是模拟生理系统宏观行为的一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inference of Gene Networks from Single Cell Data through Quantified Inductive Logic Programming Spatio-Temporal Evolution of Cellular Automata based Single Nephron Rigid Tubular Model Testing the Effectiveness of CNN and GNN and Exploring the Influence of Different Channels on Decoding Covert Speech from EEG Signals: CNN and GNN on Decoding Covert Speech from EEG Signals Deep learning-based approach for corneal ulcer screening Analysis of Dynamics and Stability of Hybrid System Models of Gene Regulatory Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1