Designing a Cross Trainer Using an Artificial Neural Network

S. Patra
{"title":"Designing a Cross Trainer Using an Artificial Neural Network","authors":"S. Patra","doi":"10.24423/CAMES.322","DOIUrl":null,"url":null,"abstract":"Cross-trainers are machines that use link mechanisms to mimic walking or running as part of workout sessions or rehabilitation systems. The simplest cross-trainer incorporates a crank-rocker or a crank-slider mechanism and provides a nearly elliptical path for foot motion. However, the natural human foot trajectories are far from being elliptical. Therefore, existing designs require modifications. Artificial neural networks are used for this purpose. Instead of trying to match the foot trajectory directly, here we tried to match different geometric properties of the area enclosed by the foot trajectory. Neural networks are trained to predict these geometric properties as outputs with the dimensions of the linkage as inputs. With the help of the same trained network, the “best-fit dimensions” were predicted for the desired trajectories.","PeriodicalId":448014,"journal":{"name":"Computer Assisted Mechanics and Engineering Sciences","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Mechanics and Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/CAMES.322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-trainers are machines that use link mechanisms to mimic walking or running as part of workout sessions or rehabilitation systems. The simplest cross-trainer incorporates a crank-rocker or a crank-slider mechanism and provides a nearly elliptical path for foot motion. However, the natural human foot trajectories are far from being elliptical. Therefore, existing designs require modifications. Artificial neural networks are used for this purpose. Instead of trying to match the foot trajectory directly, here we tried to match different geometric properties of the area enclosed by the foot trajectory. Neural networks are trained to predict these geometric properties as outputs with the dimensions of the linkage as inputs. With the help of the same trained network, the “best-fit dimensions” were predicted for the desired trajectories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的交叉训练器设计
交叉训练器是使用连接机制来模拟步行或跑步的机器,作为锻炼或康复系统的一部分。最简单的交叉训练器包含曲柄摇杆或曲柄滑块机构,并为足部运动提供近椭圆路径。然而,人类脚的自然轨迹远不是椭圆的。因此,现有的设计需要修改。人工神经网络用于此目的。我们没有直接匹配足部轨迹,而是尝试匹配足部轨迹所包围区域的不同几何属性。神经网络被训练来预测这些几何属性作为输出,连杆的尺寸作为输入。在同一训练网络的帮助下,对期望轨迹的“最佳拟合维度”进行了预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image Mining Based on Deep Belief Neural Network and Feature Matching Approach Using Manhattan Distance Designing a Cross Trainer Using an Artificial Neural Network Effect of Thermal Radiation on Biomagnetic Fluid Flow and Heat Transfer over an Unsteady Stretching Sheet A Statistical Comparison of Feature Selection Techniques for Solar Energy Forecasting Based on Geographical Data Using Metamodeling and Fluid-Structure Interaction Analysis in Multi-Objective Optimization of a Butterfly Valve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1