A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification

F. Yan, K. Mikolajczyk, J. Kittler, M. Tahir
{"title":"A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification","authors":"F. Yan, K. Mikolajczyk, J. Kittler, M. Tahir","doi":"10.1109/CBMI.2009.44","DOIUrl":null,"url":null,"abstract":"SVM is one of the state-of-the-art techniques for image and video classification. When multiple kernels are available, the recently introduced multiple kernel SVM (MK-SVM) learns an optimal linear combination of the kernels, providing a new method for information fusion. In this paper we study how the behaviour of MK-SVM is affected by the norm used to regularise the kernel weights to be learnt. Through experiments on three image/video classification datasets as well as on synthesised data, new insights are gained as to how the choice of regularisation norm should be made, especially when MK-SVM is applied to image/video classification problems.","PeriodicalId":417012,"journal":{"name":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2009.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

SVM is one of the state-of-the-art techniques for image and video classification. When multiple kernels are available, the recently introduced multiple kernel SVM (MK-SVM) learns an optimal linear combination of the kernels, providing a new method for information fusion. In this paper we study how the behaviour of MK-SVM is affected by the norm used to regularise the kernel weights to be learnt. Through experiments on three image/video classification datasets as well as on synthesised data, new insights are gained as to how the choice of regularisation norm should be made, especially when MK-SVM is applied to image/video classification problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
L_1范数与L_2范数多核支持向量机在图像和视频分类中的比较
支持向量机是图像和视频分类的最新技术之一。在有多个核的情况下,最近提出的多核支持向量机(MK-SVM)学习核的最优线性组合,为信息融合提供了一种新的方法。本文研究了用于正则化待学习核权值的范数对MK-SVM行为的影响。通过对三个图像/视频分类数据集以及合成数据的实验,我们对正则化范数的选择有了新的认识,特别是当MK-SVM应用于图像/视频分类问题时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion Vector Based Moving Object Detection and Tracking in the MPEG Compressed Domain A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification Monophony vs Polyphony: A New Method Based on Weibull Bivariate Models Kernel Discriminant Analysis Using Triangular Kernel for Semantic Scene Classification Biometric Responses to Music-Rich Segments in Films: The CDVPlex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1