Chinese coding type identification based on Kolmogorov complexity theory

Gang He, Ning Zhu, Xiaochun Wu, Qiuchen Xu
{"title":"Chinese coding type identification based on Kolmogorov complexity theory","authors":"Gang He, Ning Zhu, Xiaochun Wu, Qiuchen Xu","doi":"10.1109/ICNIDC.2010.5657789","DOIUrl":null,"url":null,"abstract":"Identification of Chinese coding type is a major and challenging issue in Chinese web content audit and analysis. In this paper we develop a novel algorithm based on the theory of Kolmogorov complexity to identify the coding type of Chinese characters of a given text segment. An array of text compressors are used as filters to evaluate the information distance of text under examination and the training corpus coded in different coding type. The information distance can be used to decide the coding type according to the Kolmogorov theory. In this paper a particular compressing algorithm is used to minimize computing complexity by separating coding book training stage and compressing stage. Finally, we present the experimental results through which the accuracy and performance of the algorithm is confirmed. The result also proves that this algorithm is especially efficient when short text segment is under examination comparing with the n-gram algorithms.","PeriodicalId":348778,"journal":{"name":"2010 2nd IEEE InternationalConference on Network Infrastructure and Digital Content","volume":"414 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd IEEE InternationalConference on Network Infrastructure and Digital Content","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2010.5657789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identification of Chinese coding type is a major and challenging issue in Chinese web content audit and analysis. In this paper we develop a novel algorithm based on the theory of Kolmogorov complexity to identify the coding type of Chinese characters of a given text segment. An array of text compressors are used as filters to evaluate the information distance of text under examination and the training corpus coded in different coding type. The information distance can be used to decide the coding type according to the Kolmogorov theory. In this paper a particular compressing algorithm is used to minimize computing complexity by separating coding book training stage and compressing stage. Finally, we present the experimental results through which the accuracy and performance of the algorithm is confirmed. The result also proves that this algorithm is especially efficient when short text segment is under examination comparing with the n-gram algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Kolmogorov复杂度理论的中文编码类型识别
中文编码类型的识别是中文网页内容审计与分析中的一个重要而富有挑战性的问题。本文提出了一种基于柯尔莫哥洛夫复杂度理论的中文字符编码类型识别算法。使用一组文本压缩器作为过滤器来评估被检测文本和不同编码类型的训练语料库的信息距离。根据柯尔莫哥洛夫理论,信息距离可以用来确定编码类型。本文采用了一种特殊的压缩算法,将编码书的训练阶段和压缩阶段分离,使计算量最小化。最后给出了实验结果,验证了算法的准确性和性能。实验结果还表明,与n-gram算法相比,该算法在检测短文本片段时效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subcarrier and power allocation in cognitive OFDM systems under imperfect CSI with smart channel estimation Spectrum leasing via selective cooperation in distributed cognitive radio networks Secondary user dominated channel reservation in Cognitive Radio Performance bounds for a cognitive radio network with network calculus analysis Countermeasure techniques for SEED hardware modules against differential power analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1