Study on the curve error of acoustic transmission path in anechoic chamber

C. Gu, Z. Meng, Jin Li
{"title":"Study on the curve error of acoustic transmission path in anechoic chamber","authors":"C. Gu, Z. Meng, Jin Li","doi":"10.1117/12.2667781","DOIUrl":null,"url":null,"abstract":"Moving the sound transmission device along the sound transmission path (wire rope) point by point is a common measurement method for the acoustic field characterization in an anechoic chamber. In the actual testing process, due to the influence of the weight of the sound transmission device and the wire rope, the sound transmission path will change from an ideal straight line to a curve, resulting in the measurement error for acoustic characteristics. In this paper, the catenary theoretical model is established to describe the sagging wire rope. To consider the gravity of the sound device, the finite element method is used to simulate the sound transmission path. The experimental validation shows that our model can better express the deviation of the sound transmission path concerning gravity. It is of great significance to improve the accuracy and reliability of measuring the acoustic characteristics in an anechoic chamber.","PeriodicalId":227067,"journal":{"name":"International Conference on Precision Instruments and Optical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Precision Instruments and Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Moving the sound transmission device along the sound transmission path (wire rope) point by point is a common measurement method for the acoustic field characterization in an anechoic chamber. In the actual testing process, due to the influence of the weight of the sound transmission device and the wire rope, the sound transmission path will change from an ideal straight line to a curve, resulting in the measurement error for acoustic characteristics. In this paper, the catenary theoretical model is established to describe the sagging wire rope. To consider the gravity of the sound device, the finite element method is used to simulate the sound transmission path. The experimental validation shows that our model can better express the deviation of the sound transmission path concerning gravity. It is of great significance to improve the accuracy and reliability of measuring the acoustic characteristics in an anechoic chamber.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
消声室声传输路径曲线误差的研究
将传声装置沿传声路径(钢丝绳)逐点移动是消声室中声场特性的常用测量方法。在实际测试过程中,由于传声装置和钢丝绳重量的影响,会使传声路径由理想的直线变为曲线,从而造成对声学特性的测量误差。本文建立了描述钢丝绳下垂的悬链线理论模型。考虑声装置的重力作用,采用有限元法模拟声的传播路径。实验验证表明,该模型能较好地表达声传播路径在重力作用下的偏差。这对提高暗室声学特性测量的准确性和可靠性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Light field image array generation for 3D printing image based on backward ray tracing Study on laser degumming and non-destructive technology of rubber press valve Thermal integration analysis of optical machines for space-based laser communications Alignment error correction of five-sensor planar cross magnetic gradient tensor system Research on method of avoiding phase unwrapping error in 3D measurement of gray code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1