Distributed HALS Algorithm for NMF based on Simple Average Consensus Algorithm

Keiju Hayashi, T. Migita, Norikazu Takahashi
{"title":"Distributed HALS Algorithm for NMF based on Simple Average Consensus Algorithm","authors":"Keiju Hayashi, T. Migita, Norikazu Takahashi","doi":"10.1109/PIC53636.2021.9687076","DOIUrl":null,"url":null,"abstract":"Nonnegative Matrix Factorization (NMF) is an efficient dimensionality reduction method for nonnegative data. Recently, a distributed algorithm has been proposed for multiple agents in a network to execute the hierarchical alternating least squares algorithm, which is well known as a fast computation method for NMF. However, the average consensus algorithm used there requires each agent to store the entire history of the values of its variables until the complete average consensus is reached, which increases the memory usage and computational cost. In this paper, we propose to replace the complicated average consensus algorithm with a simple one, and show through simulations that this replacement does not degrade the quality of the result if the values of the hyper-parameters are properly chosen.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonnegative Matrix Factorization (NMF) is an efficient dimensionality reduction method for nonnegative data. Recently, a distributed algorithm has been proposed for multiple agents in a network to execute the hierarchical alternating least squares algorithm, which is well known as a fast computation method for NMF. However, the average consensus algorithm used there requires each agent to store the entire history of the values of its variables until the complete average consensus is reached, which increases the memory usage and computational cost. In this paper, we propose to replace the complicated average consensus algorithm with a simple one, and show through simulations that this replacement does not degrade the quality of the result if the values of the hyper-parameters are properly chosen.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于简单平均一致性算法的NMF分布式HALS算法
非负矩阵分解(NMF)是一种有效的非负数据降维方法。近年来,针对网络中的多个智能体,提出了一种分布式算法来执行分层交替最小二乘算法,该算法被认为是NMF的一种快速计算方法。然而,这里使用的平均共识算法要求每个代理存储其变量值的整个历史记录,直到达到完整的平均共识,这增加了内存使用和计算成本。在本文中,我们提出用简单的平均一致性算法取代复杂的平均一致性算法,并通过仿真表明,如果超参数的值选择得当,这种替换不会降低结果的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Construction of Learning Diagnosis and Resources Recommendation System Based on Knowledge Graph Classification of Masonry Bricks Using Convolutional Neural Networks – a Case Study in a University-Industry Collaboration Project Optimal Scale Combinations Selection for Incomplete Generalized Multi-scale Decision Systems Application of Improved YOLOV4 in Intelligent Driving Scenarios Research on Hierarchical Clustering Undersampling and Random Forest Fusion Classification Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1