Automatic, model-based detection of pause-less phrase boundaries from fundamental frequency and duration features

Mahsa Sadat Elyasi Langarani, J. V. Santen
{"title":"Automatic, model-based detection of pause-less phrase boundaries from fundamental frequency and duration features","authors":"Mahsa Sadat Elyasi Langarani, J. V. Santen","doi":"10.21437/SSW.2016-1","DOIUrl":null,"url":null,"abstract":"Prosodic phrase boundaries (PBs) are a key aspect of spoken communication. In automatic PB detection, it is common to use local acoustic features, textual features, or a combination of both. Most approaches – regardless of features used – succeed in detecting major PBs (break score “4” in ToBI annotation, typically involving a pause) while detection of intermediate PBs (break score “3” in ToBI annotation) is still challenging. In this study we investigate the detection of intermediate, “pause-less” PBs using prosodic models, using a new corpus character-ized by strong prosodic dynamics and an existing (CMU) corpus. We show how using duration and fundamental frequency modeling can improve detection of these PBs, as measured by the F1 score, compared to Festival, which only uses textual features to detect PBs. We believe that this study contributes to our understanding of the prosody of phrase breaks.","PeriodicalId":340820,"journal":{"name":"Speech Synthesis Workshop","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Synthesis Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SSW.2016-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Prosodic phrase boundaries (PBs) are a key aspect of spoken communication. In automatic PB detection, it is common to use local acoustic features, textual features, or a combination of both. Most approaches – regardless of features used – succeed in detecting major PBs (break score “4” in ToBI annotation, typically involving a pause) while detection of intermediate PBs (break score “3” in ToBI annotation) is still challenging. In this study we investigate the detection of intermediate, “pause-less” PBs using prosodic models, using a new corpus character-ized by strong prosodic dynamics and an existing (CMU) corpus. We show how using duration and fundamental frequency modeling can improve detection of these PBs, as measured by the F1 score, compared to Festival, which only uses textual features to detect PBs. We believe that this study contributes to our understanding of the prosody of phrase breaks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从基本频率和持续时间特征中自动,基于模型的无停顿短语边界检测
韵律短语边界(PBs)是口语交际的一个重要方面。在自动PB检测中,通常使用局部声学特征、文本特征或两者的组合。大多数方法——不管使用什么特征——都能成功地检测到主要的PBs (ToBI注释中的中断分数为“4”,通常包括暂停),而检测到中间的PBs (ToBI注释中的中断分数为“3”)仍然具有挑战性。在这项研究中,我们利用韵律模型,利用一个以强韵律动态为特征的新语料库和一个现有的(CMU)语料库,研究了中间“无停顿”PBs的检测。与Festival相比,我们展示了如何使用持续时间和基频建模来改进这些PBs的检测(通过F1分数测量),Festival仅使用文本特征来检测PBs。我们认为这项研究有助于我们对断句韵律的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Archiving pushed Inferences from Sensor Data Streams Parallel and cascaded deep neural networks for text-to-speech synthesis Merlin: An Open Source Neural Network Speech Synthesis System A Comparative Study of the Performance of HMM, DNN, and RNN based Speech Synthesis Systems Trained on Very Large Speaker-Dependent Corpora Nonaudible murmur enhancement based on statistical voice conversion and noise suppression with external noise monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1