Metric Comparison For Text Classification

A. Muhaimin, Tresna Maulana Fahrudin, Trimono, P. Riyantoko, K. M. Hindrayani
{"title":"Metric Comparison For Text Classification","authors":"A. Muhaimin, Tresna Maulana Fahrudin, Trimono, P. Riyantoko, K. M. Hindrayani","doi":"10.33005/ijdasea.v2i1.34","DOIUrl":null,"url":null,"abstract":"Text classifications have been popular in recent years. To classify the text, the first step that needs to be done is to convert the text into some value. Some values that can be used, such as Term Frequencies, Inverse Document Frequencies, Term Frequencies – Inverse Document Frequencies, and Frequency of the word itself. This study aims to get which metric value is best in text classification. The method used is Naïve Bayes, Logistic Regression, and Random Forest. The evaluation score that is used is accuracy and Area Under Curve value. It comes out that some metric values produce similar evaluation scores. Another finding is that Random Forest is the best method among others, also the best metric for text classification is Term Frequencies – Inverse Document Frequencies.","PeriodicalId":220622,"journal":{"name":"Internasional Journal of Data Science, Engineering, and Anaylitics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internasional Journal of Data Science, Engineering, and Anaylitics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33005/ijdasea.v2i1.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Text classifications have been popular in recent years. To classify the text, the first step that needs to be done is to convert the text into some value. Some values that can be used, such as Term Frequencies, Inverse Document Frequencies, Term Frequencies – Inverse Document Frequencies, and Frequency of the word itself. This study aims to get which metric value is best in text classification. The method used is Naïve Bayes, Logistic Regression, and Random Forest. The evaluation score that is used is accuracy and Area Under Curve value. It comes out that some metric values produce similar evaluation scores. Another finding is that Random Forest is the best method among others, also the best metric for text classification is Term Frequencies – Inverse Document Frequencies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文本分类的度量比较
近年来,文本分类非常流行。要对文本进行分类,需要做的第一步是将文本转换为某种值。可以使用的一些值,如词频率、逆文档频率、词频率-逆文档频率和词本身的频率。本研究的目的是得到哪个度量值在文本分类中是最好的。使用的方法是Naïve贝叶斯,逻辑回归和随机森林。使用的评价分数是准确度和曲线下面积值。结果表明,一些度量值产生了相似的评价分数。另一个发现是随机森林是其他方法中最好的方法,文本分类的最佳度量是术语频率-逆文档频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Forecasting : Bitcoin Price with the ARIMA Method to Help Swing Traders Made Decision Determinants of Exclusive Breastfeeding Practice in Gorontalo Province Metric Comparison For Text Classification Evaluation of Customer Satisfaction with Public Trans-portation in Yogyakarta Implementation of System Dynamics to Increase Successful Utilization of E-Commerce with Marketing and Innovation Capability in MSMEs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1