Early Radiomic Experiences in Classifying Prostate Cancer Aggressiveness using 3D Local Binary Patterns

R. Sicilia, E. Cordelli, M. Merone, E. Luperto, R. Papalia, G. Iannello, P. Soda
{"title":"Early Radiomic Experiences in Classifying Prostate Cancer Aggressiveness using 3D Local Binary Patterns","authors":"R. Sicilia, E. Cordelli, M. Merone, E. Luperto, R. Papalia, G. Iannello, P. Soda","doi":"10.1109/CBMS.2019.00078","DOIUrl":null,"url":null,"abstract":"Prostate cancer is the most common form of cancer in Western countries and there is the need to develop clinical decision support systems able to support physicians in the diagnosis of clinical relevant prostate cancer and avoid useless invasive prostate biopsies. In this respect, this paper introduces a radiomic approach that classifies the prostate cancer aggressiveness by combining Three Orthogonal Planes-Local Binary Pattern (TOP - LBP) with other texture measures. Furthermore, to combat the skewed nature of class priors, our proposal employs a data augmentation technique. The results achieved on 99 samples are up-and-coming, they favorably compare against conventional PI-RADS-based approach, and they show also the benefit given by the introduction of TOP-LBP in the radiomic signature.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Prostate cancer is the most common form of cancer in Western countries and there is the need to develop clinical decision support systems able to support physicians in the diagnosis of clinical relevant prostate cancer and avoid useless invasive prostate biopsies. In this respect, this paper introduces a radiomic approach that classifies the prostate cancer aggressiveness by combining Three Orthogonal Planes-Local Binary Pattern (TOP - LBP) with other texture measures. Furthermore, to combat the skewed nature of class priors, our proposal employs a data augmentation technique. The results achieved on 99 samples are up-and-coming, they favorably compare against conventional PI-RADS-based approach, and they show also the benefit given by the introduction of TOP-LBP in the radiomic signature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用三维局部二值模式对前列腺癌侵袭性进行早期放射学分类的经验
前列腺癌是西方国家最常见的癌症形式,需要开发临床决策支持系统,以支持医生诊断临床相关的前列腺癌,避免无用的侵入性前列腺活检。在这方面,本文介绍了一种结合三正交平面-局部二值模式(TOP - LBP)和其他纹理测量的前列腺癌侵袭性放射学分类方法。此外,为了对抗类先验的偏斜性质,我们的建议采用了数据增强技术。在99个样品上取得的结果是有前途的,它们与传统的基于pi - ads的方法相比具有优势,并且它们也显示了在放射性特征中引入TOP-LBP所带来的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the Performance of a Real-Time Healthcare 4.0 System using Shared Frailty Time to Event Models Performance of Data Enhancements and Training Optimization for Neural Network: A Polyp Detection Case Study I Know How you Feel Now, and Here's why!: Demystifying Time-Continuous High Resolution Text-Based Affect Predictions in the Wild Identifying Diabetic Retinopathy from OCT Images using Deep Transfer Learning with Artificial Neural Networks Towards an Analysis of Post-Transcriptional Gene Regulation in Psoriasis via microRNAs using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1