{"title":"Static and dynamic rotor eccentricity on-line detection and discrimination in synchronous generators By No-Load E.M.F. space vector loci analysis","authors":"C. Bruzzese, A. Giordani, E. Santini","doi":"10.1109/SPEEDHAM.2008.4581180","DOIUrl":null,"url":null,"abstract":"In this paper a study about the different effects of static and dynamic rotor eccentricities on the external electric variables of a salient-pole synchronous generator is presented. Air-gap irregularities and related monitoring techniques have been studied in the past mainly about large hydro-generators (with practical applications), but similar problems have been recognized for on-board ship synchronous generators. These latter require a different approach, i.e. non-invasive monitoring. Static and dynamic rotor eccentricities were simulated in this work, for a ship-application sized generator, by using a dynamic model including inductances computed by parametric 3D FEM analysis of the faulty machine. Current, voltage, and no-load e.m.f. steady-state waveforms were analyzed by FFT and space-vector approach. No-load e.m.f. space vector is a sensitive fault indicator since its amplitude largely increases with the level of absolute eccentricity; furthermore, it is possible to discriminate the static eccentricity from the dynamic eccentricity utilizing the space vector loci ovality.","PeriodicalId":345557,"journal":{"name":"2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","volume":"53 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEEDHAM.2008.4581180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
In this paper a study about the different effects of static and dynamic rotor eccentricities on the external electric variables of a salient-pole synchronous generator is presented. Air-gap irregularities and related monitoring techniques have been studied in the past mainly about large hydro-generators (with practical applications), but similar problems have been recognized for on-board ship synchronous generators. These latter require a different approach, i.e. non-invasive monitoring. Static and dynamic rotor eccentricities were simulated in this work, for a ship-application sized generator, by using a dynamic model including inductances computed by parametric 3D FEM analysis of the faulty machine. Current, voltage, and no-load e.m.f. steady-state waveforms were analyzed by FFT and space-vector approach. No-load e.m.f. space vector is a sensitive fault indicator since its amplitude largely increases with the level of absolute eccentricity; furthermore, it is possible to discriminate the static eccentricity from the dynamic eccentricity utilizing the space vector loci ovality.