{"title":"Designing PairBuddy—A Conversational Agent for Pair Programming","authors":"Peter Robe, S. Kuttal","doi":"10.1145/3498326","DOIUrl":null,"url":null,"abstract":"From automated customer support to virtual assistants, conversational agents have transformed everyday interactions, yet despite phenomenal progress, no agent exists for programming tasks. To understand the design space of such an agent, we prototyped PairBuddy—an interactive pair programming partner—based on research from conversational agents, software engineering, education, human-robot interactions, psychology, and artificial intelligence. We iterated PairBuddy’s design using a series of Wizard-of-Oz studies. Our pilot study of six programmers showed promising results and provided insights toward PairBuddy’s interface design. Our second study of 14 programmers was positively praised across all skill levels. PairBuddy’s active application of soft skills—adaptability, motivation, and social presence—as a navigator increased participants’ confidence and trust, while its technical skills—code contributions, just-in-time feedback, and creativity support—as a driver helped participants realize their own solutions. PairBuddy takes the first step towards an Alexa-like programming partner.","PeriodicalId":322583,"journal":{"name":"ACM Transactions on Computer-Human Interaction (TOCHI)","volume":"379 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer-Human Interaction (TOCHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3498326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
From automated customer support to virtual assistants, conversational agents have transformed everyday interactions, yet despite phenomenal progress, no agent exists for programming tasks. To understand the design space of such an agent, we prototyped PairBuddy—an interactive pair programming partner—based on research from conversational agents, software engineering, education, human-robot interactions, psychology, and artificial intelligence. We iterated PairBuddy’s design using a series of Wizard-of-Oz studies. Our pilot study of six programmers showed promising results and provided insights toward PairBuddy’s interface design. Our second study of 14 programmers was positively praised across all skill levels. PairBuddy’s active application of soft skills—adaptability, motivation, and social presence—as a navigator increased participants’ confidence and trust, while its technical skills—code contributions, just-in-time feedback, and creativity support—as a driver helped participants realize their own solutions. PairBuddy takes the first step towards an Alexa-like programming partner.