{"title":"Hybrid power control for multi-carrier systems","authors":"Osama Elgarhy, L. Reggiani, Riccardo Ferrari","doi":"10.1109/WMNC.2017.8248848","DOIUrl":null,"url":null,"abstract":"Uplink conventional power control techniques in systems with frequency reuse one have some limitations, typically regarding the tradeoff between the average throughput of users at cell center and cell edge. Moreover, one of the main drawbacks is the excess use of power. From our point of view, one of the reasons for this waste of power is the practice of giving all the users in the cell the same target SINR in the power control process. Since there exists a rate limit for users in the cell, depending on their positions, a Hybrid Power Control (HPC) technique is introduced here in order to overcome these limitations and provide a more flexible solution. The HPC uses power control with at least two different types of setup and the rate limit of the cell users is respected. Moreover, this HPC method shows a significant reduction in the average cell transmission power, satisfactory cell edge users performance and an improvement in the overall cell rate, around 25%. Moreover, the average transmitted power is reduced by more than 20 dB.","PeriodicalId":338777,"journal":{"name":"2017 10th IFIP Wireless and Mobile Networking Conference (WMNC)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th IFIP Wireless and Mobile Networking Conference (WMNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMNC.2017.8248848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Uplink conventional power control techniques in systems with frequency reuse one have some limitations, typically regarding the tradeoff between the average throughput of users at cell center and cell edge. Moreover, one of the main drawbacks is the excess use of power. From our point of view, one of the reasons for this waste of power is the practice of giving all the users in the cell the same target SINR in the power control process. Since there exists a rate limit for users in the cell, depending on their positions, a Hybrid Power Control (HPC) technique is introduced here in order to overcome these limitations and provide a more flexible solution. The HPC uses power control with at least two different types of setup and the rate limit of the cell users is respected. Moreover, this HPC method shows a significant reduction in the average cell transmission power, satisfactory cell edge users performance and an improvement in the overall cell rate, around 25%. Moreover, the average transmitted power is reduced by more than 20 dB.