Transgender face recognition with off-the-shelf pre-trained CNNs: A comprehensive study

Ramachandra Raghavendra, S. Venkatesh, K. Raja, C. Busch
{"title":"Transgender face recognition with off-the-shelf pre-trained CNNs: A comprehensive study","authors":"Ramachandra Raghavendra, S. Venkatesh, K. Raja, C. Busch","doi":"10.1109/IWBF.2018.8401557","DOIUrl":null,"url":null,"abstract":"Face recognition has become a ubiquitous way of establishing identity in many applications. Gender transformation therapy induces changes to face on both for structural and textural features. A challenge for face recognition system is, therefore, to reliably identify the subjects after they undergo gender change while the enrolment images correspond to pre-change. In this work, we propose a new framework based on augmenting and fine-tuning deep Residual Network-50 (ResNet-50). We employ YouTube database with 37 subjects whose images are self-captured to evaluate the performance of state-of-the-schemes. Obtained results demonstrate the superiority of the proposed scheme over twelve different state-of-the-art schemes with an improved Rank — 1 recognition rate.","PeriodicalId":259849,"journal":{"name":"2018 International Workshop on Biometrics and Forensics (IWBF)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF.2018.8401557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Face recognition has become a ubiquitous way of establishing identity in many applications. Gender transformation therapy induces changes to face on both for structural and textural features. A challenge for face recognition system is, therefore, to reliably identify the subjects after they undergo gender change while the enrolment images correspond to pre-change. In this work, we propose a new framework based on augmenting and fine-tuning deep Residual Network-50 (ResNet-50). We employ YouTube database with 37 subjects whose images are self-captured to evaluate the performance of state-of-the-schemes. Obtained results demonstrate the superiority of the proposed scheme over twelve different state-of-the-art schemes with an improved Rank — 1 recognition rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用现成的预训练cnn进行跨性别人脸识别:一项全面的研究
在许多应用中,人脸识别已经成为一种无处不在的身份识别方式。性别转化疗法诱导面部结构和肌理特征的改变。因此,人脸识别系统面临的一个挑战是,在受试者发生性别变化后,如何可靠地识别受试者,而入学图像与性别变化前的图像相对应。在这项工作中,我们提出了一个基于增强和微调深度残差网络50 (ResNet-50)的新框架。我们使用YouTube数据库,其中有37个主题的图像是自捕获的,以评估状态方案的性能。结果表明,该方案优于12种不同的先进方案,并提高了Rank - 1识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cover page Unconstrained Biometric Recognition based on Thermal Hand Images Transgender face recognition with off-the-shelf pre-trained CNNs: A comprehensive study Age and gender classification from ear images Have you permission to answer this phone?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1