{"title":"Cómo estudiar, suspender y optimizar la propagación de infecciones epidémicas. El método dinámico de Monte Carlo","authors":"Gennadiy Burlak","doi":"10.30973/progmat/2020.12.3/1","DOIUrl":null,"url":null,"abstract":"Estudiamos una dinámica de la propagación de la infección epidemiológica a diferentes valores del factor de riesgo β (un parámetro de control) con el uso del enfoque dinámico de Monte Carlo (DMC). En nuestro modelo de juguete, la infección se transmite debido a los contactos de individuos que se mueven al azar. Mostramos que el comportamiento de los individuos recuperados depende críticamente del valor de β. Para valores subcríticos β <βc ~ 0,6, el número de casos infectados converge asintóticamente a cero, de modo que para un factor de riesgo moderado la infección puede desaparecer con el tiempo. Nuestras simulaciones mostraron que, con el tiempo, las propiedades de dicho sistema se acercan asintóticamente a la transición crítica en el sistema de percolación 2D. También analizamos un sistema extendido, que incluye dos parámetros adicionales: los límites de activación / desactivación del estado de cuarentena. Se encuentra que la cuarentena temprana da como resultado la dinámica oscilatoria irregular (con exponente de Lyapunov positivo) de la infección. Si el límite inferior de la cuarentena es lo suficientemente pequeño, la dinámica de recuperación adquiere una forma característica no monótona con varios picos amortiguados. También se estudia la dinámica de la propagación de la infección en el caso de los individuos con inmunidad.","PeriodicalId":417893,"journal":{"name":"Programación Matemática y Software","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programación Matemática y Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30973/progmat/2020.12.3/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Estudiamos una dinámica de la propagación de la infección epidemiológica a diferentes valores del factor de riesgo β (un parámetro de control) con el uso del enfoque dinámico de Monte Carlo (DMC). En nuestro modelo de juguete, la infección se transmite debido a los contactos de individuos que se mueven al azar. Mostramos que el comportamiento de los individuos recuperados depende críticamente del valor de β. Para valores subcríticos β <βc ~ 0,6, el número de casos infectados converge asintóticamente a cero, de modo que para un factor de riesgo moderado la infección puede desaparecer con el tiempo. Nuestras simulaciones mostraron que, con el tiempo, las propiedades de dicho sistema se acercan asintóticamente a la transición crítica en el sistema de percolación 2D. También analizamos un sistema extendido, que incluye dos parámetros adicionales: los límites de activación / desactivación del estado de cuarentena. Se encuentra que la cuarentena temprana da como resultado la dinámica oscilatoria irregular (con exponente de Lyapunov positivo) de la infección. Si el límite inferior de la cuarentena es lo suficientemente pequeño, la dinámica de recuperación adquiere una forma característica no monótona con varios picos amortiguados. También se estudia la dinámica de la propagación de la infección en el caso de los individuos con inmunidad.