Artifact Detection in Chronically Recorded Local Field Potentials using Long-Short Term Memory Neural Network

Marcos I. Fabietti, M. Mahmud, Ahmad Lotfi, Alberto Averna, D. Guggenmos, R. Nudo, M. Chiappalone
{"title":"Artifact Detection in Chronically Recorded Local Field Potentials using Long-Short Term Memory Neural Network","authors":"Marcos I. Fabietti, M. Mahmud, Ahmad Lotfi, Alberto Averna, D. Guggenmos, R. Nudo, M. Chiappalone","doi":"10.1109/AICT50176.2020.9368638","DOIUrl":null,"url":null,"abstract":"The process of recording local fields potentials (LFP) can be contaminated by different internal and external sources of noise. To successfully use these recordings, noise must be removed, for which an automatic detection tool is needed to speed up the detection process. This work presents the use of a specific configuration of the recurrent neural network based machine learning approach, known as the long-short term memory (LSTM), in two different settings to identify artifacts and compares the obtained results to a feed forward neural network both in terms of classification performance and computational time. Using spontaneous LFP signals recorded chronically by multisite neuronal probes in behaving rats, our results show that the LSTM model with and without drop out can achieve an accuracy of 87.1%.","PeriodicalId":136491,"journal":{"name":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT50176.2020.9368638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The process of recording local fields potentials (LFP) can be contaminated by different internal and external sources of noise. To successfully use these recordings, noise must be removed, for which an automatic detection tool is needed to speed up the detection process. This work presents the use of a specific configuration of the recurrent neural network based machine learning approach, known as the long-short term memory (LSTM), in two different settings to identify artifacts and compares the obtained results to a feed forward neural network both in terms of classification performance and computational time. Using spontaneous LFP signals recorded chronically by multisite neuronal probes in behaving rats, our results show that the LSTM model with and without drop out can achieve an accuracy of 87.1%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于长短期记忆神经网络的慢性记录局部场电位伪影检测
局部场电位的记录过程会受到不同的内外部噪声源的污染。为了成功地使用这些录音,必须去除噪音,为此需要自动检测工具来加快检测过程。这项工作介绍了在两种不同的设置中使用基于循环神经网络的特定配置的机器学习方法,称为长短期记忆(LSTM),以识别工件,并在分类性能和计算时间方面将获得的结果与前馈神经网络进行比较。使用行为大鼠多位点神经元探针长期记录的自发LFP信号,我们的结果表明,有和没有drop - out的LSTM模型可以达到87.1%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain-based open infrastructure for URL filtering in an Internet browser 2D Amplitude-Only Microwave Tomography Algorithm for Breast-Cancer Detection Information Extraction from Arabic Law Documents An Experimental Design Approach to Analyse the Performance of Island-Based Parallel Artificial Bee Colony Algorithm Automation Check Vulnerabilities Of Access Points Based On 802.11 Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1