Detecting early signs of depression in the conversational domain: The role of transfer learning in low-resource scenarios

Petr Lorenc, Ana Sabina Uban, Paolo Rosso, Jan vSediv'y
{"title":"Detecting early signs of depression in the conversational domain: The role of transfer learning in low-resource scenarios","authors":"Petr Lorenc, Ana Sabina Uban, Paolo Rosso, Jan vSediv'y","doi":"10.48550/arXiv.2204.10841","DOIUrl":null,"url":null,"abstract":". The high prevalence of depression in society has given rise to the need for new digital tools to assist in its early detection. To this end, existing research has mainly focused on detecting depression in the domain of social media, where there is a sufficient amount of data. How-ever, with the rise of conversational agents like Siri or Alexa, the conversational domain is becoming more critical. Unfortunately, there is a lack of data in the conversational domain. We perform a study focusing on domain adaptation from social media to the conversational domain. Our approach mainly exploits the linguistic information preserved in the vector representation of text. We describe transfer learning techniques to classify users who suffer from early signs of depression with high recall. We achieve state-of-the-art results on a commonly used conversational dataset, and we highlight how the method can easily be used in conversational agents. We publicly release all source code 5 .","PeriodicalId":136374,"journal":{"name":"International Conference on Applications of Natural Language to Data Bases","volume":"368 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Applications of Natural Language to Data Bases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.10841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. The high prevalence of depression in society has given rise to the need for new digital tools to assist in its early detection. To this end, existing research has mainly focused on detecting depression in the domain of social media, where there is a sufficient amount of data. How-ever, with the rise of conversational agents like Siri or Alexa, the conversational domain is becoming more critical. Unfortunately, there is a lack of data in the conversational domain. We perform a study focusing on domain adaptation from social media to the conversational domain. Our approach mainly exploits the linguistic information preserved in the vector representation of text. We describe transfer learning techniques to classify users who suffer from early signs of depression with high recall. We achieve state-of-the-art results on a commonly used conversational dataset, and we highlight how the method can easily be used in conversational agents. We publicly release all source code 5 .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在会话领域发现抑郁的早期迹象:低资源情境下迁移学习的作用
. 抑郁症在社会上的高流行率引起了对新的数字工具的需求,以协助其早期发现。为此,现有的研究主要集中在社交媒体领域检测抑郁症,这方面有足够的数据。然而,随着Siri或Alexa等对话代理的兴起,对话领域变得越来越重要。不幸的是,在会话领域缺乏数据。我们进行了一项研究,侧重于从社交媒体到会话领域的领域适应。我们的方法主要利用文本向量表示中保留的语言信息。我们描述了迁移学习技术,以分类用户谁遭受抑郁症的早期迹象与高回忆。我们在一个常用的会话数据集上获得了最先进的结果,并强调了该方法如何轻松地用于会话代理。我们公开发布所有源代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adversarial Capsule Networks for Romanian Satire Detection and Sentiment Analysis RoBERTweet: A BERT Language Model for Romanian Tweets LonXplain: Lonesomeness as a Consequence of Mental Disturbance in Reddit Posts A Few-shot Approach to Resume Information Extraction via Prompts Detecting early signs of depression in the conversational domain: The role of transfer learning in low-resource scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1