{"title":"Hierarchical motor diagnosis utilizing structural knowledge and a self-learning neuro-fuzzy scheme","authors":"Dominik Füssel, R. Isermann","doi":"10.1109/IECON.1998.723027","DOIUrl":null,"url":null,"abstract":"Fault diagnosis requires a classification system that can distinguish between different faults based on observed symptoms of the process under investigation. Since the fault symptom relationships are not always known beforehand, a system is needed which can be learned from experimental or simulated data. A fuzzy logic based diagnosis is advantageous. It allows an easy incorporation of a-priori known rules and also enables the user to understand the inference of the system. In this contribution, a new diagnosis scheme is presented and applied to a DC motor. The approach is based on a combination of structural a-priori knowledge and measured data in order to create a hierarchical diagnosis system that can be adapted to different motors. Advantages of the system are its high degree of transparency and an increased robustness.","PeriodicalId":377136,"journal":{"name":"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1998.723027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68
Abstract
Fault diagnosis requires a classification system that can distinguish between different faults based on observed symptoms of the process under investigation. Since the fault symptom relationships are not always known beforehand, a system is needed which can be learned from experimental or simulated data. A fuzzy logic based diagnosis is advantageous. It allows an easy incorporation of a-priori known rules and also enables the user to understand the inference of the system. In this contribution, a new diagnosis scheme is presented and applied to a DC motor. The approach is based on a combination of structural a-priori knowledge and measured data in order to create a hierarchical diagnosis system that can be adapted to different motors. Advantages of the system are its high degree of transparency and an increased robustness.