On efficient content-based near-duplicate video detection

M. S. Uysal, C. Beecks, T. Seidl
{"title":"On efficient content-based near-duplicate video detection","authors":"M. S. Uysal, C. Beecks, T. Seidl","doi":"10.1109/CBMI.2015.7153633","DOIUrl":null,"url":null,"abstract":"The high usage of the Internet, in particular videosharing and social networking websites, have led to enormous amount of video data recently, raising demand on effective and efficient content-based near-duplicate video detection approaches. In this paper, we propose to efficiently search for near-duplicate videos via the utilization of efficient approximation techniques of the well-known effective similarity measure Earth Mover's Distance (EMD). To this end, we model keyframes by flexible feature representations which are then exploited in a filter-and-refine architecture to alleviate the query processing time. The experiments on real data indicate high efficiency guaranteeing reduced number of EMD computations, which contributes to the near-duplicate detection in video datasets.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The high usage of the Internet, in particular videosharing and social networking websites, have led to enormous amount of video data recently, raising demand on effective and efficient content-based near-duplicate video detection approaches. In this paper, we propose to efficiently search for near-duplicate videos via the utilization of efficient approximation techniques of the well-known effective similarity measure Earth Mover's Distance (EMD). To this end, we model keyframes by flexible feature representations which are then exploited in a filter-and-refine architecture to alleviate the query processing time. The experiments on real data indicate high efficiency guaranteeing reduced number of EMD computations, which contributes to the near-duplicate detection in video datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内容的高效近重复视频检测
互联网的高度使用,特别是视频分享和社交网站,导致了大量的视频数据,提高了对有效和高效的基于内容的近重复视频检测方法的需求。在本文中,我们提出利用众所周知的有效相似度量地球移动者距离(EMD)的有效近似技术来有效地搜索近重复视频。为此,我们通过灵活的特征表示来建模关键帧,然后在过滤和细化架构中利用这些特征表示来减少查询处理时间。在实际数据上的实验表明,该方法具有较高的效率,保证了EMD计算量的减少,有助于视频数据集的近重复检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of dissimilarity measures for 3D object retrieval with application to multi-feature retrieval A factorized model for multiple SVM and multi-label classification for large scale multimedia indexing On the use of statistical semantics for metadata-based social image retrieval Automatic detection of repetitive actions in a video Hierarchical clustering pseudo-relevance feedback for social image search result diversification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1