{"title":"On efficient content-based near-duplicate video detection","authors":"M. S. Uysal, C. Beecks, T. Seidl","doi":"10.1109/CBMI.2015.7153633","DOIUrl":null,"url":null,"abstract":"The high usage of the Internet, in particular videosharing and social networking websites, have led to enormous amount of video data recently, raising demand on effective and efficient content-based near-duplicate video detection approaches. In this paper, we propose to efficiently search for near-duplicate videos via the utilization of efficient approximation techniques of the well-known effective similarity measure Earth Mover's Distance (EMD). To this end, we model keyframes by flexible feature representations which are then exploited in a filter-and-refine architecture to alleviate the query processing time. The experiments on real data indicate high efficiency guaranteeing reduced number of EMD computations, which contributes to the near-duplicate detection in video datasets.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The high usage of the Internet, in particular videosharing and social networking websites, have led to enormous amount of video data recently, raising demand on effective and efficient content-based near-duplicate video detection approaches. In this paper, we propose to efficiently search for near-duplicate videos via the utilization of efficient approximation techniques of the well-known effective similarity measure Earth Mover's Distance (EMD). To this end, we model keyframes by flexible feature representations which are then exploited in a filter-and-refine architecture to alleviate the query processing time. The experiments on real data indicate high efficiency guaranteeing reduced number of EMD computations, which contributes to the near-duplicate detection in video datasets.