{"title":"Recognizing Daily Life Context Using Web-Collected Audio Data","authors":"M. Rossi, G. Tröster, O. Amft","doi":"10.1109/ISWC.2012.12","DOIUrl":null,"url":null,"abstract":"This work presents an approach to model daily life contexts from web-collected audio data. Being available in vast quantities from many different sources, audio data from the web provides heterogeneous training data to construct recognition systems. Crowd-sourced textual descriptions (tags) related to individual sound samples were used in a configurable recognition system to model 23 sound context categories. We analysed our approach using different outlier filtering techniques with dedicated recordings of all 23 categories and in a study with 230 hours of full-day recordings of 10 participants using smart phones. Depending on the outlier technique, our system achieved recognition accuracies between 51% and 80%.","PeriodicalId":190627,"journal":{"name":"2012 16th International Symposium on Wearable Computers","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.2012.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
This work presents an approach to model daily life contexts from web-collected audio data. Being available in vast quantities from many different sources, audio data from the web provides heterogeneous training data to construct recognition systems. Crowd-sourced textual descriptions (tags) related to individual sound samples were used in a configurable recognition system to model 23 sound context categories. We analysed our approach using different outlier filtering techniques with dedicated recordings of all 23 categories and in a study with 230 hours of full-day recordings of 10 participants using smart phones. Depending on the outlier technique, our system achieved recognition accuracies between 51% and 80%.