{"title":"Context-Aware Cyber-Physical Assistance Systems in Industrial Systems: A Human Activity Recognition Approach","authors":"E. Roth, Mirco Möncks, T. Bohné, Luisa Pumplun","doi":"10.1109/ICHMS49158.2020.9209488","DOIUrl":null,"url":null,"abstract":"The increasing demand for product customisation is leading to higher complexities within manufacturing. This imposes new challenges for the workforce. One way to support operators’ productivity may be context-aware, human-centred cyber-physical assistance systems. Human Activity Recognition (HAR) is a promising approach to enable context-awareness. However, standardised approaches to integrate HAR into existing manufacturing environments are rare. Particularly, there is a lack of available datasets of manufacturing activities. Moreover, comparative studies of inertial and visual HAR approaches are still rare. This work therefore proposes Methods-Time Measurement (MTM) as a standardised foundation for creating a manufacturing activity dataset. Subsequently, five different machine learning algorithms are tested for their recognition performance based on the dataset captured with an inertial sensor suit and an RGB-D sensor. A proof-of-concept is delivered for both sensor categories applied to the scope of 18 MTM-1 activities, whereas inertial data outperformed depth data. K-Nearest Neighbour and Bagged Tree algorithms revealed the best classification accuracy results in this context.","PeriodicalId":132917,"journal":{"name":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHMS49158.2020.9209488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The increasing demand for product customisation is leading to higher complexities within manufacturing. This imposes new challenges for the workforce. One way to support operators’ productivity may be context-aware, human-centred cyber-physical assistance systems. Human Activity Recognition (HAR) is a promising approach to enable context-awareness. However, standardised approaches to integrate HAR into existing manufacturing environments are rare. Particularly, there is a lack of available datasets of manufacturing activities. Moreover, comparative studies of inertial and visual HAR approaches are still rare. This work therefore proposes Methods-Time Measurement (MTM) as a standardised foundation for creating a manufacturing activity dataset. Subsequently, five different machine learning algorithms are tested for their recognition performance based on the dataset captured with an inertial sensor suit and an RGB-D sensor. A proof-of-concept is delivered for both sensor categories applied to the scope of 18 MTM-1 activities, whereas inertial data outperformed depth data. K-Nearest Neighbour and Bagged Tree algorithms revealed the best classification accuracy results in this context.