Compact and queryable representation of raster datasets

Susana Ladra, J. Paramá, Fernando Silva-Coira
{"title":"Compact and queryable representation of raster datasets","authors":"Susana Ladra, J. Paramá, Fernando Silva-Coira","doi":"10.1145/2949689.2949710","DOIUrl":null,"url":null,"abstract":"Compact data structures combine in a unique data structure a compressed representation of the data and the structures to access such data. The target is to be able to manage data directly in compressed form, and in this way, to keep data always compressed, even in main memory. With this, we obtain two benefits: we can manage larger datasets in main memory and we take advantage of a better usage of the memory hierarchy. In this work, we present a compact data structure to represent raster data, which is commonly used in geographical information systems to represent attributes of the space (i.e., temperatures, elevation measures, etc.). The proposed data structure is not only able to represent a dataset in compressed form and access to an individual datum without decompressing the dataset from the beginning, but it also indexes its content, and thus it is capable of speeding up queries. There have been previous attempts to represent raster data using compact data structures, which work well when the raster dataset has few different values. However, when the range of possible values increases, performance in both space and time degrades. Our new method competes with previous approaches in that first scenario, but scales much better when the number of different values and the size of the dataset increase, which is critical when applying over real datasets.","PeriodicalId":254803,"journal":{"name":"Proceedings of the 28th International Conference on Scientific and Statistical Database Management","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2949689.2949710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Compact data structures combine in a unique data structure a compressed representation of the data and the structures to access such data. The target is to be able to manage data directly in compressed form, and in this way, to keep data always compressed, even in main memory. With this, we obtain two benefits: we can manage larger datasets in main memory and we take advantage of a better usage of the memory hierarchy. In this work, we present a compact data structure to represent raster data, which is commonly used in geographical information systems to represent attributes of the space (i.e., temperatures, elevation measures, etc.). The proposed data structure is not only able to represent a dataset in compressed form and access to an individual datum without decompressing the dataset from the beginning, but it also indexes its content, and thus it is capable of speeding up queries. There have been previous attempts to represent raster data using compact data structures, which work well when the raster dataset has few different values. However, when the range of possible values increases, performance in both space and time degrades. Our new method competes with previous approaches in that first scenario, but scales much better when the number of different values and the size of the dataset increase, which is critical when applying over real datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
栅格数据集的紧凑和可查询的表示
紧凑的数据结构将数据的压缩表示和访问这些数据的结构结合在一个独特的数据结构中。目标是能够直接以压缩形式管理数据,并以这种方式保持数据始终是压缩的,即使在主存中也是如此。这样,我们获得了两个好处:我们可以在主内存中管理更大的数据集,并且可以更好地利用内存层次结构。在这项工作中,我们提出了一种紧凑的数据结构来表示栅格数据,栅格数据通常用于地理信息系统中表示空间属性(即温度,高程测量等)。所提出的数据结构不仅能够以压缩形式表示数据集,并且无需从头解压缩数据集即可访问单个数据,而且还可以对数据集的内容进行索引,从而能够加快查询速度。以前曾有人尝试使用紧凑的数据结构来表示栅格数据,当栅格数据集只有很少不同的值时,这种结构可以很好地工作。但是,当可能值的范围增大时,在空间和时间上的性能都会下降。在第一个场景中,我们的新方法与之前的方法竞争,但是当不同值的数量和数据集的大小增加时,它的可伸缩性要好得多,这在应用于真实数据集时是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SMS: Stable Matching Algorithm using Skylines Graph-based modelling of query sets for differential privacy Efficient Feedback Collection for Pay-as-you-go Source Selection Multi-Assignment Single Joins for Parallel Cross-Match of Astronomic Catalogs on Heterogeneous Clusters Compact and queryable representation of raster datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1