Adaptive sprinting: How to get the most out of Phase Change based passive cooling

Fulya Kaplan, A. Coskun
{"title":"Adaptive sprinting: How to get the most out of Phase Change based passive cooling","authors":"Fulya Kaplan, A. Coskun","doi":"10.1109/ISLPED.2015.7273487","DOIUrl":null,"url":null,"abstract":"CMOS scaling trends lead to elevated on-chip temperatures, which substantially limit the performance of today's processors. To improve thermal efficiency, Phase Change Materials (PCMs) have recently been used as passive cooling solutions. PCMs store large amount of heat at near-constant temperature during phase change, allowing strategies such as computational sprinting. While existing sprinting methods allow short performance boosts, there is significant unexplored potential in improving performance on systems with PCM-enhanced cooling. To this end, this paper proposes a novel runtime management policy driven by observations that are not captured by prior techniques: (i) PCM melts non-uniformly due to spatially heterogeneous on-chip heat distribution; (ii) power consumption during sprinting is highly application dependent and assuming a fixed sprinting power leads to lower thermal efficiency; (iii) if we monitor the remaining PCM energy at various locations, we can utilize the PCM heat storage capability much more efficiently. The proposed Adaptive Sprinting policy exploits these observations to extend sprinting duration for increased performance gains. Our policy monitors the remaining PCM energy corresponding to each core at runtime, and using this information, it decides on the number, the location and the voltage-frequency (V/f) setting of the sprinting cores. Experimental evaluation including a detailed phase change thermal model demonstrates 29% performance improvement, 22% energy savings, and 43% energy delay product (EDP) reduction on average, compared to prior strategies.","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2015.7273487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

CMOS scaling trends lead to elevated on-chip temperatures, which substantially limit the performance of today's processors. To improve thermal efficiency, Phase Change Materials (PCMs) have recently been used as passive cooling solutions. PCMs store large amount of heat at near-constant temperature during phase change, allowing strategies such as computational sprinting. While existing sprinting methods allow short performance boosts, there is significant unexplored potential in improving performance on systems with PCM-enhanced cooling. To this end, this paper proposes a novel runtime management policy driven by observations that are not captured by prior techniques: (i) PCM melts non-uniformly due to spatially heterogeneous on-chip heat distribution; (ii) power consumption during sprinting is highly application dependent and assuming a fixed sprinting power leads to lower thermal efficiency; (iii) if we monitor the remaining PCM energy at various locations, we can utilize the PCM heat storage capability much more efficiently. The proposed Adaptive Sprinting policy exploits these observations to extend sprinting duration for increased performance gains. Our policy monitors the remaining PCM energy corresponding to each core at runtime, and using this information, it decides on the number, the location and the voltage-frequency (V/f) setting of the sprinting cores. Experimental evaluation including a detailed phase change thermal model demonstrates 29% performance improvement, 22% energy savings, and 43% energy delay product (EDP) reduction on average, compared to prior strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应冲刺:如何充分利用基于相变的被动冷却
CMOS缩放趋势导致芯片上温度升高,这大大限制了当今处理器的性能。为了提高热效率,相变材料(PCMs)最近被用作被动冷却解决方案。pcm在相变过程中以近乎恒定的温度储存大量热量,从而实现计算冲刺等策略。虽然现有的冲刺方法可以在短时间内提高性能,但在提高pcm增强冷却系统的性能方面,仍有很大的潜力有待开发。为此,本文提出了一种新的运行时管理策略,该策略由先前技术无法捕获的观测数据驱动:(i)由于片上热量分布的空间异质性,PCM熔化不均匀;(ii)冲刺过程中的功耗高度依赖于应用,假设固定的冲刺功率会导致热效率降低;(iii)如果我们在不同地点监测剩余的PCM能量,我们可以更有效地利用PCM的储热能力。提出的自适应冲刺策略利用这些观察结果来延长冲刺时间,以提高性能。我们的策略在运行时监控每个内核对应的剩余PCM能量,并使用这些信息来决定冲刺内核的数量、位置和电压频率(V/f)设置。包括详细相变热模型在内的实验评估表明,与之前的策略相比,该策略的性能平均提高了29%,节能22%,能量延迟积(EDP)平均降低了43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel slope detection technique for robust STTRAM sensing Power management for mobile games on asymmetric multi-cores Leveraging emerging nonvolatile memory in high-level synthesis with loop transformations An efficient DVS scheme for on-chip networks using reconfigurable Virtual Channel allocators Experimental characterization of in-package microfluidic cooling on a System-on-Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1