Atlas: Exploration and Mapping with a Sparse Swarm of Networked IoT Robots

Razanne Abu-Aisheh, F. Bronzino, M. Rifai, Brian G. Kilberg, K. Pister, T. Watteyne
{"title":"Atlas: Exploration and Mapping with a Sparse Swarm of Networked IoT Robots","authors":"Razanne Abu-Aisheh, F. Bronzino, M. Rifai, Brian G. Kilberg, K. Pister, T. Watteyne","doi":"10.1109/DCOSS49796.2020.00060","DOIUrl":null,"url":null,"abstract":"Exploration and mapping is a fundamental capability of a swarm of robots: robots enter an unknown area, explore it, and collectively build a map of it. This capability is important regardless of whether the robots are crawling, flying, or swimming. Existing exploration and mapping algorithms tend to either be inefficient, or rely on having a dense swarm of robots. This paper introduces Atlas, an exploration and mapping algorithm for sparse swarms of robots, which completes a full exploration even in the extreme case of a single robot. We develop an open-source simulator and show that Atlas outperforms the state-of-the-art in terms of exploration speed and completeness of the resulting map.","PeriodicalId":198837,"journal":{"name":"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS49796.2020.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Exploration and mapping is a fundamental capability of a swarm of robots: robots enter an unknown area, explore it, and collectively build a map of it. This capability is important regardless of whether the robots are crawling, flying, or swimming. Existing exploration and mapping algorithms tend to either be inefficient, or rely on having a dense swarm of robots. This paper introduces Atlas, an exploration and mapping algorithm for sparse swarms of robots, which completes a full exploration even in the extreme case of a single robot. We develop an open-source simulator and show that Atlas outperforms the state-of-the-art in terms of exploration speed and completeness of the resulting map.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atlas:利用稀疏的联网物联网机器人群进行探索和绘图
探索和绘图是一群机器人的基本能力:机器人进入未知区域,进行探索,并共同构建该区域的地图。无论机器人是爬行、飞行还是游泳,这种能力都很重要。现有的探索和映射算法要么效率低下,要么依赖于密集的机器人群。本文介绍了Atlas算法,这是一种稀疏机器人群的探索和映射算法,即使在单个机器人的极端情况下,它也能完成一次完整的探索。我们开发了一个开源模拟器,并表明Atlas在探索速度和最终地图的完整性方面优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Health Information Exchange with Blockchain amid Covid-19-like Pandemics Instrumentation for Cooking Pattern Analysis in Peri-Urban Nepal Predictive and Explainable Machine Learning for Industrial Internet of Things Applications Message from the IoTI4 2020 Workshop Chairs An Agnostic Data-Driven Approach to Predict Stoppages of Industrial Packing Machine in Near
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1