{"title":"Recognition and interpretation of parametric gesture","authors":"Andrew D. Wilson, A. Bobick","doi":"10.1109/ICCV.1998.710739","DOIUrl":null,"url":null,"abstract":"A new method for the representation, recognition, and interpretation of parameterized gesture is presented. By parameterized gesture. We mean gestures that exhibit a meaningful variation; one example is a point gesture where the important parameter is the 2-dimensional direction. Our approach is to extend the standard hidden Markov model method of gesture recognition by including a global parametric variation in the output probabilities of the states of the HMM. Using a linear model to derive the theory, we formulated an expectation-maximization (EM) method for training the parametric HMM. During testing, the parametric HMM simultaneously recognizes the gesture and estimates the quantifying parameters. Using visually derived and directly measured 3-dimensional hand position measurements as input, we present results on two. Different movements-a size gesture and a point gesture-and show robustness with respect to noise in the input features.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"124","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 124
Abstract
A new method for the representation, recognition, and interpretation of parameterized gesture is presented. By parameterized gesture. We mean gestures that exhibit a meaningful variation; one example is a point gesture where the important parameter is the 2-dimensional direction. Our approach is to extend the standard hidden Markov model method of gesture recognition by including a global parametric variation in the output probabilities of the states of the HMM. Using a linear model to derive the theory, we formulated an expectation-maximization (EM) method for training the parametric HMM. During testing, the parametric HMM simultaneously recognizes the gesture and estimates the quantifying parameters. Using visually derived and directly measured 3-dimensional hand position measurements as input, we present results on two. Different movements-a size gesture and a point gesture-and show robustness with respect to noise in the input features.