Which machine learning paradigm for fake news detection?

Dimitrios Katsaros, G. Stavropoulos, Dimitrios Papakostas
{"title":"Which machine learning paradigm for fake news detection?","authors":"Dimitrios Katsaros, G. Stavropoulos, Dimitrios Papakostas","doi":"10.1145/3350546.3352552","DOIUrl":null,"url":null,"abstract":"Fake news detection/classification is gradually becoming of paramount importance to out society in order to avoid the so-called reality vertigo, and protect in particular the less educated persons. Various machine learning techniques have been proposed to address this issue. This article presents a comprehensive performance evaluation of eight machine learning algorithms for fake news detection/classification. CCS CONCEPTS • General and reference → Evaluation; • Human-centered computing → Collaborative and social computing design and evaluation methods; Social network analysis.","PeriodicalId":171168,"journal":{"name":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3350546.3352552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Fake news detection/classification is gradually becoming of paramount importance to out society in order to avoid the so-called reality vertigo, and protect in particular the less educated persons. Various machine learning techniques have been proposed to address this issue. This article presents a comprehensive performance evaluation of eight machine learning algorithms for fake news detection/classification. CCS CONCEPTS • General and reference → Evaluation; • Human-centered computing → Collaborative and social computing design and evaluation methods; Social network analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哪种机器学习范式用于假新闻检测?
为了避免所谓的现实眩晕,特别是保护受教育程度较低的人,假新闻的检测/分类逐渐成为我们社会的头等大事。已经提出了各种机器学习技术来解决这个问题。本文介绍了用于假新闻检测/分类的八种机器学习算法的综合性能评估。CCS概念•一般和参考→评估;•以人为中心的计算→协同和社会计算设计和评估方法;社会网络分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Issue Recommendation for Open Source Communities Exploring Differences in the Impact of Users’ Traces on Arabic and English Facebook Search Design and implementation of an open source Greek POS Tagger and Entity Recognizer using spaCy Extracting Ego-Centric Social Networks from Linked Open Data Towards an End-User Layer for Data Integrity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1