ThEconSum: an Economics-domained Dataset for Thai Text Summarization and Baseline Models

Sawittree Jumpathong, Akkharawoot Takhom, P. Boonkwan, Vipas Sutantayawalee, Peerachet Porkaew, Sitthaa Phaholphinyo, Charun Phrombut, T. Supnithi, Khemarath Choke-Mangmi, Saran Yamasathien, Nattachai Tretasayuth, Kasidis Kanwatchara, Atiwat Aiemleuk
{"title":"ThEconSum: an Economics-domained Dataset for Thai Text Summarization and Baseline Models","authors":"Sawittree Jumpathong, Akkharawoot Takhom, P. Boonkwan, Vipas Sutantayawalee, Peerachet Porkaew, Sitthaa Phaholphinyo, Charun Phrombut, T. Supnithi, Khemarath Choke-Mangmi, Saran Yamasathien, Nattachai Tretasayuth, Kasidis Kanwatchara, Atiwat Aiemleuk","doi":"10.1109/iSAI-NLP56921.2022.9960271","DOIUrl":null,"url":null,"abstract":"Language resources as datasets are an essential component in developing an effective automatic text summarization (ATS) system. Some public datasets are relatively uncommon when compared with popular languages, due to the complexity of language preprocessing resulting in a labor-intensive annotation by linguists. ATS techniques are to condense the size of text into a shorter output and reduce the time for finding the information from the huge textual data. This paper presents the Thai ATS construction with Economics-domain data, called ThEconSum, which manifests some linguistic challenges for Thai summarization. Existing public public datasets were employed for developing the ATS system in Thai economic news articles.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Language resources as datasets are an essential component in developing an effective automatic text summarization (ATS) system. Some public datasets are relatively uncommon when compared with popular languages, due to the complexity of language preprocessing resulting in a labor-intensive annotation by linguists. ATS techniques are to condense the size of text into a shorter output and reduce the time for finding the information from the huge textual data. This paper presents the Thai ATS construction with Economics-domain data, called ThEconSum, which manifests some linguistic challenges for Thai summarization. Existing public public datasets were employed for developing the ATS system in Thai economic news articles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
consum:一个经济学领域的数据集,用于泰国文本摘要和基线模型
语言资源作为数据集是开发有效的自动文本摘要(ATS)系统的重要组成部分。与流行语言相比,一些公共数据集相对不常见,这是由于语言预处理的复杂性导致语言学家的劳动密集型注释。ATS技术是将文本的大小压缩为更短的输出,减少从庞大的文本数据中查找信息的时间。本文介绍了使用经济领域数据构建的泰国语自动统计系统,称为consum,这显示了泰国语摘要在语言上的一些挑战。现有的公共数据集被用于开发泰国经济新闻文章的ATS系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evaluation of Interviewer's Presentation Styles for Interview Practice with a Communicative Robot An Analysis of Acoustic Features for Attention Score in Thai MoCA Assessment Convolutional Time Delay Neural Network for Khmer Automatic Speech Recognition ThEconSum: an Economics-domained Dataset for Thai Text Summarization and Baseline Models Using the MQTT Broker as a Speech-Activated Medium to Control the Operation of Devices in the Smart Office
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1