{"title":"Agronomic Operation and Maintenance of Field Irrigation Systems","authors":"L. Gurovich, Luis Fernando Riveros","doi":"10.5772/INTECHOPEN.84997","DOIUrl":null,"url":null,"abstract":"Worldwide experience indicates that projected economic returns on investments in field irrigation systems are seldom obtained by farmers, due to improper strategies on irrigation scheduling, lack of operational control, and limited feedback on the actual performance of irrigation systems, in terms of application efficiency and uniformity. An approach to dynamic integration of soil hydrodynamic characteristics, potential evapotranspiration, and crop leaf area index evolution throughout the irrigation season is detailed, oriented to integrate smart water management strategies and techniques in the operation and maintenance of farm irrigation systems. This dynamic integrative platform has been used in Perú and México by actual farming companies producing table grapes, wine grapes, avocado, and bell peppers exported to international markets; this chapter documents its practical results in terms of water and energy savings, crop yield, and fruit quality.","PeriodicalId":445587,"journal":{"name":"Irrigation - Water Productivity and Operation, Sustainability and Climate Change","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation - Water Productivity and Operation, Sustainability and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.84997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Worldwide experience indicates that projected economic returns on investments in field irrigation systems are seldom obtained by farmers, due to improper strategies on irrigation scheduling, lack of operational control, and limited feedback on the actual performance of irrigation systems, in terms of application efficiency and uniformity. An approach to dynamic integration of soil hydrodynamic characteristics, potential evapotranspiration, and crop leaf area index evolution throughout the irrigation season is detailed, oriented to integrate smart water management strategies and techniques in the operation and maintenance of farm irrigation systems. This dynamic integrative platform has been used in Perú and México by actual farming companies producing table grapes, wine grapes, avocado, and bell peppers exported to international markets; this chapter documents its practical results in terms of water and energy savings, crop yield, and fruit quality.