Pub Date : 2019-12-18DOI: 10.5772/intechopen.89787
Sandra Ricart Casadevall, J. Olcina, A. Rico
Water-agriculture nexus is context dependent (water availability and water use depend on spatial and temporal issues), socially constructed (multiple stakeholders’ perceptions and interests interact), and technically uncertain (benefits from new technologies are difficult to be estimated and duly evaluated). This means that irrigation systems should be analyzed as hydrosocial cycles [1], which likewise takes into account all of these issues including how water management and water governance are conceived and how climate change impacts could be addressed through a “nexus” approach [2]. In few words, irrigation systems are under pressure to produce more food with lower supplies of water [3]. According to this, water availability and water consumption [4], food productivity and food security [5], environmental awareness [6], population growth [7], rural development [8], and climate change [9] are issues to be considered when irrigation systems are promoted, developed, and managed both globally and locally.
{"title":"Introductory Chapter: Addressing Past Claims and Oncoming Challenges for Irrigation Systems","authors":"Sandra Ricart Casadevall, J. Olcina, A. Rico","doi":"10.5772/intechopen.89787","DOIUrl":"https://doi.org/10.5772/intechopen.89787","url":null,"abstract":"Water-agriculture nexus is context dependent (water availability and water use depend on spatial and temporal issues), socially constructed (multiple stakeholders’ perceptions and interests interact), and technically uncertain (benefits from new technologies are difficult to be estimated and duly evaluated). This means that irrigation systems should be analyzed as hydrosocial cycles [1], which likewise takes into account all of these issues including how water management and water governance are conceived and how climate change impacts could be addressed through a “nexus” approach [2]. In few words, irrigation systems are under pressure to produce more food with lower supplies of water [3]. According to this, water availability and water consumption [4], food productivity and food security [5], environmental awareness [6], population growth [7], rural development [8], and climate change [9] are issues to be considered when irrigation systems are promoted, developed, and managed both globally and locally.","PeriodicalId":445587,"journal":{"name":"Irrigation - Water Productivity and Operation, Sustainability and Climate Change","volume":"127 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116323744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-28DOI: 10.5772/INTECHOPEN.87023
W. Mendes, F. M. U. Araújo, Salah Er-Raki
Variable rate irrigation (VRI) is the capacity to vary the depth of water application in a field spatially. Developing precise management zones is necessary to efficient variable rate irrigation technologies. Intelligent fuzzy inference system based on precision irrigation knowledge, i.e., a system capable of creating prescriptive maps to control the rotation speed of the central pivot. Based on the VRI-prescribed map created by the intelligent system of decision-making, the pivot can increase or decrease its speed, reaching the desired depth of application in a certain irrigation zone. Therefore, this strategy of speed control is more realistic compared to traditional methods. Results indicate that data from the edaphoclimatic variables, when well fitted to the fuzzy logic, can solve uncertainties and non-linearities of an irrigation system and establish a control model for high-precision irrigation. Because remote sensing provides quick measurements and easy access to crop information for large irrigation areas, images will be used as inputs. The developed fuzzy system for pivot control is original and innovative. Further-more, the artificial intelligent systems can be applied widely in agricultural areas, so the results were favorable to the continuity of studies on precision irrigation and application of the fuzzy logic in precision agriculture.
{"title":"Integrating Remote Sensing Data into Fuzzy Control System for Variable Rate Irrigation Estimates","authors":"W. Mendes, F. M. U. Araújo, Salah Er-Raki","doi":"10.5772/INTECHOPEN.87023","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.87023","url":null,"abstract":"Variable rate irrigation (VRI) is the capacity to vary the depth of water application in a field spatially. Developing precise management zones is necessary to efficient variable rate irrigation technologies. Intelligent fuzzy inference system based on precision irrigation knowledge, i.e., a system capable of creating prescriptive maps to control the rotation speed of the central pivot. Based on the VRI-prescribed map created by the intelligent system of decision-making, the pivot can increase or decrease its speed, reaching the desired depth of application in a certain irrigation zone. Therefore, this strategy of speed control is more realistic compared to traditional methods. Results indicate that data from the edaphoclimatic variables, when well fitted to the fuzzy logic, can solve uncertainties and non-linearities of an irrigation system and establish a control model for high-precision irrigation. Because remote sensing provides quick measurements and easy access to crop information for large irrigation areas, images will be used as inputs. The developed fuzzy system for pivot control is original and innovative. Further-more, the artificial intelligent systems can be applied widely in agricultural areas, so the results were favorable to the continuity of studies on precision irrigation and application of the fuzzy logic in precision agriculture.","PeriodicalId":445587,"journal":{"name":"Irrigation - Water Productivity and Operation, Sustainability and Climate Change","volume":"333 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124303069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-25DOI: 10.5772/INTECHOPEN.86722
M. Irfan, A. Qadir, Habib Ali, N. Jamil, S. Ahmad
The climatic and topographic characteristics of Indus Basin provided an excel-lent condition for the development of irrigation system. Archaeological remains of Harappa and Mohenjo-Daro indicated that several canals were constructed in this region. The Indus River System (IRS) was developed into a complex network of canals, and 74% of its water was utilized for irrigation after Indus Water Treaty. After 1947, Indus irrigation network was extended, and cropland area was increased from 8.5 to 18.2 MH in Pakistan and 2.02 to 8.5 MH in India. Construction of dams, barrages, and canals to divert the maximum river water for irrigation resulted in drying up the natural pathways of the rivers, except during monsoon season. The aquifer in the irrigated areas became high and created problems of waterlogging and salinity, but due to extensive groundwater extraction, water table near urban centers is lowered now. Water quality was degraded due to addition of fertilizers, pesticides, chemicals, municipal sewage, and industrial effluents. Due to climate change, the glaciers in the upper catchment areas are continuously retreating and the frequency of floods and droughts is increasing. The objective of this chapter is to provide a comprehensive review of irrigation system developments in Indus Basin and its implications on environmental resources.
{"title":"Vulnerability of Environmental Resources in Indus Basin after the Development of Irrigation System","authors":"M. Irfan, A. Qadir, Habib Ali, N. Jamil, S. Ahmad","doi":"10.5772/INTECHOPEN.86722","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86722","url":null,"abstract":"The climatic and topographic characteristics of Indus Basin provided an excel-lent condition for the development of irrigation system. Archaeological remains of Harappa and Mohenjo-Daro indicated that several canals were constructed in this region. The Indus River System (IRS) was developed into a complex network of canals, and 74% of its water was utilized for irrigation after Indus Water Treaty. After 1947, Indus irrigation network was extended, and cropland area was increased from 8.5 to 18.2 MH in Pakistan and 2.02 to 8.5 MH in India. Construction of dams, barrages, and canals to divert the maximum river water for irrigation resulted in drying up the natural pathways of the rivers, except during monsoon season. The aquifer in the irrigated areas became high and created problems of waterlogging and salinity, but due to extensive groundwater extraction, water table near urban centers is lowered now. Water quality was degraded due to addition of fertilizers, pesticides, chemicals, municipal sewage, and industrial effluents. Due to climate change, the glaciers in the upper catchment areas are continuously retreating and the frequency of floods and droughts is increasing. The objective of this chapter is to provide a comprehensive review of irrigation system developments in Indus Basin and its implications on environmental resources.","PeriodicalId":445587,"journal":{"name":"Irrigation - Water Productivity and Operation, Sustainability and Climate Change","volume":"169 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124722954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-22DOI: 10.5772/INTECHOPEN.87010
H. Mansour, Ren Hongjouan, Jiandong Hu, Bao Hong Feng, Changmei Liang
Desalination is the process that is performed to remove excess salts from water to become potable or agriculture. This applied science is now concerned by many countries suffering from water shortage. Over the next ten years, this science is expected to grow significantly due to the expected water crises in many countries. The consumption of energy in the desalination process is one of the important problems and difficult obstacles that need to be overcome. The Egyptian water strategy should include increasing amount of desalinated water to more than 50%, especially since Egypt is in a very rich location in saltwater sources and they can be utilized to the maximum extent possible. The researchers have attempted to develop varieties of some traditional crops such as wheat, saline resistant to salinity using local selective ecotourism techniques and using genetic engineering through which saline-tolerant genes are added, but it can be said that so far these efforts have not resulted in the production of candidate seawater breeds The maximum salinity of irrigation water in the long term, even for the most salt-tolerant crops such as date palm, is still less than 5 mmol.
{"title":"Performance of Water Desalination and Modern Irrigation Systems for Improving Water Productivity","authors":"H. Mansour, Ren Hongjouan, Jiandong Hu, Bao Hong Feng, Changmei Liang","doi":"10.5772/INTECHOPEN.87010","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.87010","url":null,"abstract":"Desalination is the process that is performed to remove excess salts from water to become potable or agriculture. This applied science is now concerned by many countries suffering from water shortage. Over the next ten years, this science is expected to grow significantly due to the expected water crises in many countries. The consumption of energy in the desalination process is one of the important problems and difficult obstacles that need to be overcome. The Egyptian water strategy should include increasing amount of desalinated water to more than 50%, especially since Egypt is in a very rich location in saltwater sources and they can be utilized to the maximum extent possible. The researchers have attempted to develop varieties of some traditional crops such as wheat, saline resistant to salinity using local selective ecotourism techniques and using genetic engineering through which saline-tolerant genes are added, but it can be said that so far these efforts have not resulted in the production of candidate seawater breeds The maximum salinity of irrigation water in the long term, even for the most salt-tolerant crops such as date palm, is still less than 5 mmol.","PeriodicalId":445587,"journal":{"name":"Irrigation - Water Productivity and Operation, Sustainability and Climate Change","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115190341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-31DOI: 10.5772/INTECHOPEN.85889
Q. Khan, O. Sayal
Spate irrigation is a unique system of agriculture practiced in the piedmont plains by harvesting of floods received after rainfall in the mountains. This system is practiced in different parts of the world; in Pakistan, it is extensive in the western belt. The system is based on water distribution from head to tail. There are laws for distribution of water, but due to the magnitude of flood, it sometimes retains in the upstream and sometimes finds its way to the river. Agriculture practiced in this system depends on floods, which brings sedimentation, useful in replenishing soil fertility. Soil has the ability to hold moisture for long. The changing climatic pattern has greatly influenced the system both under droughts and floods. Livelihood of the spate farmers depends on agricultural crops and livestock. In either case of the extreme climate, they have to cope with limited options. Changing climatic pattern is responsible for extending the climatic seasons and enhancing the irrationality of floods. Construction of huge dam on the torrential watershed is a great project executed by the government for large floods, overcomes energy crisis, and has potential to irrigate land through canal. This chapter is a brief comprehension of spate irrigation under changing climate with special focus on Pakistan.
{"title":"Spate Irrigation: Impact of Climate Change with Specific Reference to Pakistan","authors":"Q. Khan, O. Sayal","doi":"10.5772/INTECHOPEN.85889","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.85889","url":null,"abstract":"Spate irrigation is a unique system of agriculture practiced in the piedmont plains by harvesting of floods received after rainfall in the mountains. This system is practiced in different parts of the world; in Pakistan, it is extensive in the western belt. The system is based on water distribution from head to tail. There are laws for distribution of water, but due to the magnitude of flood, it sometimes retains in the upstream and sometimes finds its way to the river. Agriculture practiced in this system depends on floods, which brings sedimentation, useful in replenishing soil fertility. Soil has the ability to hold moisture for long. The changing climatic pattern has greatly influenced the system both under droughts and floods. Livelihood of the spate farmers depends on agricultural crops and livestock. In either case of the extreme climate, they have to cope with limited options. Changing climatic pattern is responsible for extending the climatic seasons and enhancing the irrationality of floods. Construction of huge dam on the torrential watershed is a great project executed by the government for large floods, overcomes energy crisis, and has potential to irrigate land through canal. This chapter is a brief comprehension of spate irrigation under changing climate with special focus on Pakistan.","PeriodicalId":445587,"journal":{"name":"Irrigation - Water Productivity and Operation, Sustainability and Climate Change","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123811481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-12DOI: 10.5772/INTECHOPEN.84997
L. Gurovich, Luis Fernando Riveros
Worldwide experience indicates that projected economic returns on investments in field irrigation systems are seldom obtained by farmers, due to improper strategies on irrigation scheduling, lack of operational control, and limited feedback on the actual performance of irrigation systems, in terms of application efficiency and uniformity. An approach to dynamic integration of soil hydrodynamic characteristics, potential evapotranspiration, and crop leaf area index evolution throughout the irrigation season is detailed, oriented to integrate smart water management strategies and techniques in the operation and maintenance of farm irrigation systems. This dynamic integrative platform has been used in Perú and México by actual farming companies producing table grapes, wine grapes, avocado, and bell peppers exported to international markets; this chapter documents its practical results in terms of water and energy savings, crop yield, and fruit quality.
{"title":"Agronomic Operation and Maintenance of Field Irrigation Systems","authors":"L. Gurovich, Luis Fernando Riveros","doi":"10.5772/INTECHOPEN.84997","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.84997","url":null,"abstract":"Worldwide experience indicates that projected economic returns on investments in field irrigation systems are seldom obtained by farmers, due to improper strategies on irrigation scheduling, lack of operational control, and limited feedback on the actual performance of irrigation systems, in terms of application efficiency and uniformity. An approach to dynamic integration of soil hydrodynamic characteristics, potential evapotranspiration, and crop leaf area index evolution throughout the irrigation season is detailed, oriented to integrate smart water management strategies and techniques in the operation and maintenance of farm irrigation systems. This dynamic integrative platform has been used in Perú and México by actual farming companies producing table grapes, wine grapes, avocado, and bell peppers exported to international markets; this chapter documents its practical results in terms of water and energy savings, crop yield, and fruit quality.","PeriodicalId":445587,"journal":{"name":"Irrigation - Water Productivity and Operation, Sustainability and Climate Change","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116664033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}