A Scilab toolbox of nonlinear regression models using a linear solver

Ya-Jun Qu, Bao-Gang Hu
{"title":"A Scilab toolbox of nonlinear regression models using a linear solver","authors":"Ya-Jun Qu, Bao-Gang Hu","doi":"10.1109/OSSC.2011.6184710","DOIUrl":null,"url":null,"abstract":"This work describes a toolbox of nonlinear regression models developed on an open-source platform of Scilab. The models are formed from radial basis function (RBF) neural network structures. For a fast calculation of the models, we adopt a linear solver in implementations. A specific effort is made on applications of linear priors, which presents a unique feature different from other existing regression toolboxes. In this work, we define linear priors to be a class of prior information that exhibits a linear relation to the attributes of interests, such as variables, free parameters, or their functions of the models. Two approaches of incorporating linear priors are implemented in the models, namely, Lagrange Multiplier (LM) and Direct Elimination (DE). Several numerical examples are demonstrated in the toolbox for the educational purpose on learning nonlinear regression models. From the numerical examples, users can understand the importance of utilizing linear priors in models. The linear priors include the hard constraints on interpolation points and soft constraints on ranking list.","PeriodicalId":197116,"journal":{"name":"2011 IEEE International Workshop on Open-source Software for Scientific Computation","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Open-source Software for Scientific Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OSSC.2011.6184710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work describes a toolbox of nonlinear regression models developed on an open-source platform of Scilab. The models are formed from radial basis function (RBF) neural network structures. For a fast calculation of the models, we adopt a linear solver in implementations. A specific effort is made on applications of linear priors, which presents a unique feature different from other existing regression toolboxes. In this work, we define linear priors to be a class of prior information that exhibits a linear relation to the attributes of interests, such as variables, free parameters, or their functions of the models. Two approaches of incorporating linear priors are implemented in the models, namely, Lagrange Multiplier (LM) and Direct Elimination (DE). Several numerical examples are demonstrated in the toolbox for the educational purpose on learning nonlinear regression models. From the numerical examples, users can understand the importance of utilizing linear priors in models. The linear priors include the hard constraints on interpolation points and soft constraints on ranking list.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个Scilab工具箱的非线性回归模型使用线性求解器
本文描述了一个基于Scilab开源平台开发的非线性回归模型工具箱。该模型由径向基函数(RBF)神经网络结构构成。为了快速计算模型,我们在实现中采用了线性求解器。在线性先验的应用上做了特别的努力,它呈现出不同于其他现有回归工具箱的独特特征。在这项工作中,我们将线性先验定义为一类与兴趣属性(如变量、自由参数或其模型函数)呈线性关系的先验信息。在模型中实现了两种纳入线性先验的方法,即拉格朗日乘子法(LM)和直接消去法(DE)。为了学习非线性回归模型的教学目的,在工具箱中展示了几个数值例子。从数值例子中,用户可以理解在模型中使用线性先验的重要性。线性先验包括插值点的硬约束和排序表的软约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization research of genetic neural network based on Scilab Towards open machine learning: Mloss.org and mldata.org A Scilab toolbox of nonlinear regression models using a linear solver Multi-agent collaboration based trust routing scheme for military ad hoc network Design and implement of the OFDM communication system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1