{"title":"Region2vec","authors":"Mingjun Xiang","doi":"10.1145/3404555.3404613","DOIUrl":null,"url":null,"abstract":"With the advancement of urbanization, urban land use detection has become a research hotspot. Numerous methods have been proposed to identify urban land use, in which points of interest (POI) data is widely used, and sometimes other data source like GPS trajectories is incorporated. However, previous works have hardly fully utilized the global spatial information contained in the POI data, or ignored correlations between features when integrating multiple data source, so resulting in information loss. In this study, we propose an integrated framework titled Region2vec to detect urban land use type by combining POI and mobile phone data. First, POI-based region embeddings are generated by applying Glove model and LDA model to mine the global spatial information and land use topic distributions respectively. The mobile phone data is utilized to generate human activity pattern-based embeddings. Then a similarity matrix is constructed according to POI-based and activity pattern-based embeddings. Finally, the similarity measures are regarded as clustering features to extract the urban land use results. Experiments are implemented and compared with other urban land use algorithms based on data in Sanya, China. The results demonstrate the effectiveness of the proposed framework. This research can provide effective information support for urban planning.","PeriodicalId":220526,"journal":{"name":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404555.3404613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the advancement of urbanization, urban land use detection has become a research hotspot. Numerous methods have been proposed to identify urban land use, in which points of interest (POI) data is widely used, and sometimes other data source like GPS trajectories is incorporated. However, previous works have hardly fully utilized the global spatial information contained in the POI data, or ignored correlations between features when integrating multiple data source, so resulting in information loss. In this study, we propose an integrated framework titled Region2vec to detect urban land use type by combining POI and mobile phone data. First, POI-based region embeddings are generated by applying Glove model and LDA model to mine the global spatial information and land use topic distributions respectively. The mobile phone data is utilized to generate human activity pattern-based embeddings. Then a similarity matrix is constructed according to POI-based and activity pattern-based embeddings. Finally, the similarity measures are regarded as clustering features to extract the urban land use results. Experiments are implemented and compared with other urban land use algorithms based on data in Sanya, China. The results demonstrate the effectiveness of the proposed framework. This research can provide effective information support for urban planning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
mRNA Big Data Analysis of Hepatoma Carcinoma Between Different Genders Generalization or Instantiation?: Estimating the Relative Abstractness between Images and Text Auxiliary Edge Detection for Semantic Image Segmentation Intrusion Detection of Abnormal Objects for Railway Scenes Using Infrared Images Multi-Tenant Machine Learning Platform Based on Kubernetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1