A fuzzy additive reasoning scheme for probabilistic Mamdani fuzzy systems

U. Kaymak, W. Bergh, J. V. D. Berg
{"title":"A fuzzy additive reasoning scheme for probabilistic Mamdani fuzzy systems","authors":"U. Kaymak, W. Bergh, J. V. D. Berg","doi":"10.1109/FUZZ.2003.1209384","DOIUrl":null,"url":null,"abstract":"We introduce a type of probabilistic fuzzy system with a generalized Mamdani-type fuzzy rule base, and an additive reasoning scheme where conditional probabilities on fuzzy events are aggregated using an interpolation approach. In this way, probabilistic fuzzy outputs can be calculated for arbitrary crisp input vectors. If desired, the probabilistic fuzzy output can be made crisp using a defuzzification and averaging step. Besides introducing the architecture of the probabilistic fuzzy systems and the corresponding equations for calculating the input-output mapping, we summarize some key results from the probability theory and statistics on fuzzy sets. To show the working of the probabilistic fuzzy models introduced, we analyze a simulated GARCH time series using a data-driven approach. A probabilistic fuzzy rule-base is derived from the given data set containing rules that yield a rather good intuitive description of the underlying GARCH-process. Further, we show some additional results like the estimated regression plane and several (un)conditional probability distributions.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1209384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We introduce a type of probabilistic fuzzy system with a generalized Mamdani-type fuzzy rule base, and an additive reasoning scheme where conditional probabilities on fuzzy events are aggregated using an interpolation approach. In this way, probabilistic fuzzy outputs can be calculated for arbitrary crisp input vectors. If desired, the probabilistic fuzzy output can be made crisp using a defuzzification and averaging step. Besides introducing the architecture of the probabilistic fuzzy systems and the corresponding equations for calculating the input-output mapping, we summarize some key results from the probability theory and statistics on fuzzy sets. To show the working of the probabilistic fuzzy models introduced, we analyze a simulated GARCH time series using a data-driven approach. A probabilistic fuzzy rule-base is derived from the given data set containing rules that yield a rather good intuitive description of the underlying GARCH-process. Further, we show some additional results like the estimated regression plane and several (un)conditional probability distributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概率Mamdani模糊系统的模糊加性推理方案
我们引入了一类具有广义mamdani型模糊规则库的概率模糊系统,以及一种使用插值方法聚合模糊事件的条件概率的加性推理方案。通过这种方法,可以计算任意脆输入向量的概率模糊输出。如果需要,可以使用去模糊化和平均步骤使概率模糊输出变得清晰。本文除了介绍了概率模糊系统的结构和相应的输入-输出映射的计算公式外,还总结了概率论和模糊集统计的一些重要结果。为了展示引入的概率模糊模型的工作原理,我们使用数据驱动的方法分析了一个模拟GARCH时间序列。概率模糊规则库是从给定的数据集派生出来的,其中包含对底层garch过程产生相当好的直观描述的规则。此外,我们还展示了一些额外的结果,如估计的回归平面和几个(非)条件概率分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy flow-shop scheduling models based on credibility measure Morphological perceptrons with dendritic structure A validation procedure for fuzzy multiattribute decision making Context dependent information aggregation Traffic engineering with MPLS using fuzzy logic for application in IP networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1