{"title":"Learning Temporal Sequence Model from Partially Labeled Data","authors":"Yifan Shi, A. Bobick, Irfan Essa","doi":"10.1109/CVPR.2006.174","DOIUrl":null,"url":null,"abstract":"Graphical models are often used to represent and recognize activities. Purely unsupervised methods (such as HMMs) can be trained automatically but yield models whose internal structure - the nodes - are difficult to interpret semantically. Manually constructed networks typically have nodes corresponding to sub-events, but the programming and training of these networks is tedious and requires extensive domain expertise. In this paper, we propose a semi-supervised approach in which a manually structured, Propagation Network (a form of a DBN) is initialized from a small amount of fully annotated data, and then refined by an EM-based learning method in an unsupervised fashion. During node refinement (the M step) a boosting-based algorithm is employed to train the evidence detectors of individual nodes. Experiments on a variety of data types - vision and inertial measurements - in several tasks demonstrate the ability to learn from as little as one fully annotated example accompanied by a small number of positive but non-annotated training examples. The system is applied to both recognition and anomaly detection tasks.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72
Abstract
Graphical models are often used to represent and recognize activities. Purely unsupervised methods (such as HMMs) can be trained automatically but yield models whose internal structure - the nodes - are difficult to interpret semantically. Manually constructed networks typically have nodes corresponding to sub-events, but the programming and training of these networks is tedious and requires extensive domain expertise. In this paper, we propose a semi-supervised approach in which a manually structured, Propagation Network (a form of a DBN) is initialized from a small amount of fully annotated data, and then refined by an EM-based learning method in an unsupervised fashion. During node refinement (the M step) a boosting-based algorithm is employed to train the evidence detectors of individual nodes. Experiments on a variety of data types - vision and inertial measurements - in several tasks demonstrate the ability to learn from as little as one fully annotated example accompanied by a small number of positive but non-annotated training examples. The system is applied to both recognition and anomaly detection tasks.